Vibration-Based Damage Prediction in Composite Concrete–Steel Structures Using Finite Elements

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:Buildings vol. 15, no. 2 (2025), p. 200
Päätekijä: Cedeño-Rodríguez, Mario D
Muut tekijät: Yanez, Sergio J, Saavedra-Flores, Erick I, Carlos Felipe Guzmán, Pina, Juan Carlos
Julkaistu:
MDPI AG
Aiheet:
Linkit:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!

MARC

LEADER 00000nab a2200000uu 4500
001 3159456854
003 UK-CbPIL
022 |a 2075-5309 
024 7 |a 10.3390/buildings15020200  |2 doi 
035 |a 3159456854 
045 2 |b d20250101  |b d20251231 
084 |a 231437  |2 nlm 
100 1 |a Cedeño-Rodríguez, Mario D 
245 1 |a Vibration-Based Damage Prediction in Composite Concrete–Steel Structures Using Finite Elements 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The prediction of structural damage through vibrational analysis is a critical task in the field of composite structures. Structural defects and damage can negatively influence the load-carrying capacity of the beam. Therefore, detecting structural damage early is essential to preventing catastrophic failures. This study addresses the challenge of predicting damage in composite concrete–steel beams using a vibration-based finite element approach. To tackle this complex task, a finite element model to a quasi-static analysis emulating a four-point pure bending experimental test was performed. Notably, the numerical model equations were carefully modified using the Newton–Raphson method to account for the stiffness degradation resulting from material strains. These modified equations were subsequently employed in a modal analysis to compute modal shapes and natural frequencies corresponding to the stressed state. The difference between initial and damaged modal shape curvatures served as the foundation for predicting a damage index. The approach effectively captured stiffness degradation in the model, leading to observable changes in modal responses, including a reduction in natural frequencies and variations in modal shapes. This enabled the accurate prediction of damage instances during construction, service, or accidental load scenarios, thereby enhancing the structural and operational safety of composite system designs. This research contributes to the advancement of vibration-based methods for damage detection, emphasizing the complexities in characterizing damage in composite structural geometries. Further exploration and refinement of this approach are essential for the precise classification of damage types. 
653 |a Damage prevention 
653 |a Finite element method 
653 |a Software 
653 |a Concrete 
653 |a Stiffness 
653 |a Steel beams 
653 |a Newton-Raphson method 
653 |a Damage detection 
653 |a Measurement techniques 
653 |a Modal analysis 
653 |a Automation 
653 |a Degradation 
653 |a Vibrational analysis 
653 |a Carrying capacity 
653 |a Bearing strength 
653 |a Vibration 
653 |a Accident prediction 
653 |a Predictions 
653 |a Numerical models 
653 |a Mathematical models 
653 |a Concrete slabs 
653 |a Resonant frequencies 
653 |a Vibration analysis 
653 |a Composite structures 
653 |a Composite materials 
653 |a Methods 
653 |a Algorithms 
653 |a Reinforced concrete 
653 |a Bridges 
653 |a Load carrying capacity 
700 1 |a Yanez, Sergio J 
700 1 |a Saavedra-Flores, Erick I 
700 1 |a Carlos Felipe Guzmán 
700 1 |a Pina, Juan Carlos 
773 0 |t Buildings  |g vol. 15, no. 2 (2025), p. 200 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159456854/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159456854/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159456854/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch