HGeoKG: A Hierarchical Geographic Knowledge Graph for Geographic Knowledge Reasoning

Zapisane w:
Opis bibliograficzny
Wydane w:ISPRS International Journal of Geo-Information vol. 14, no. 1 (2025), p. 18
1. autor: Li, Tailong
Kolejni autorzy: Chen, Renyao, Duan, Yilin, Yao, Hong, Li, Shengwen, Li, Xinchuan
Wydane:
MDPI AG
Hasła przedmiotowe:
Dostęp online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000nab a2200000uu 4500
001 3159465191
003 UK-CbPIL
022 |a 2220-9964 
024 7 |a 10.3390/ijgi14010018  |2 doi 
035 |a 3159465191 
045 2 |b d20250101  |b d20250131 
084 |a 231472  |2 nlm 
100 1 |a Li, Tailong  |u School of Future Technology, China University of Geosciences, Wuhan 430074, China; <email>ltl@cug.edu.cn</email> (T.L.); <email>yaohong@cug.edu.cn</email> (H.Y.) 
245 1 |a HGeoKG: A Hierarchical Geographic Knowledge Graph for Geographic Knowledge Reasoning 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The Geographic Knowledge Graph (GeoKG) serves as an effective method for organizing geographic knowledge, playing a crucial role in facilitating semantic interoperability across heterogeneous data sources. However, existing GeoKGs are limited by a lack of hierarchical modeling and insufficient coverage of geographic knowledge (e.g., limited entity types, inadequate attributes, and insufficient spatial relationships), which hinders their effective use and representation of semantic content. This paper presents HGeoKG, a hierarchical geographic knowledge graph that comprehensively models hierarchical structures, attributes, and spatial relationships of multi-type geographic entities. Based on the concept and construction methods of HGeoKG, this paper developed a dataset named HGeoKG-MHT-670K. Statistical analysis reveals significant regional heterogeneity and long-tail distribution patterns in HGeoKG-MHT-670K. Furthermore, extensive geographic knowledge reasoning experiments on HGeoKG-MHT-670K show that most knowledge graph embedding (KGE) models fail to achieve satisfactory performance. This suggests the need to accommodate spatial heterogeneity across different regions and improve the embedding quality of long-tail geographic entities. HGeoKG serves as both a reference for GeoKG construction and a benchmark for geographic knowledge reasoning, driving the development of geographical artificial intelligence (GeoAI). 
610 4 |a Wikipedia 
653 |a Geographical distribution 
653 |a Internet 
653 |a Artificial intelligence 
653 |a Datasets 
653 |a Construction 
653 |a Ontology 
653 |a Statistical analysis 
653 |a Construction methods 
653 |a Knowledge representation 
653 |a Heterogeneity 
653 |a Patchiness 
653 |a Regional development 
653 |a Geography 
653 |a Semantics 
653 |a Spatial heterogeneity 
653 |a Reasoning 
653 |a Regions 
653 |a Encyclopedias 
653 |a Statistical methods 
653 |a Graphical representations 
653 |a Embedding 
653 |a Distribution patterns 
700 1 |a Chen, Renyao  |u School of Computer Science, China University of Geosciences, Wuhan 430074, China; <email>cryao@cug.edu.cn</email> (R.C.); <email>duanyl@cug.edu.cn</email> (Y.D.); <email>swli@cug.edu.cn</email> (S.L.) 
700 1 |a Duan, Yilin  |u School of Computer Science, China University of Geosciences, Wuhan 430074, China; <email>cryao@cug.edu.cn</email> (R.C.); <email>duanyl@cug.edu.cn</email> (Y.D.); <email>swli@cug.edu.cn</email> (S.L.) 
700 1 |a Yao, Hong  |u School of Future Technology, China University of Geosciences, Wuhan 430074, China; <email>ltl@cug.edu.cn</email> (T.L.); <email>yaohong@cug.edu.cn</email> (H.Y.); School of Computer Science, China University of Geosciences, Wuhan 430074, China; <email>cryao@cug.edu.cn</email> (R.C.); <email>duanyl@cug.edu.cn</email> (Y.D.); <email>swli@cug.edu.cn</email> (S.L.); State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430078, China 
700 1 |a Li, Shengwen  |u School of Computer Science, China University of Geosciences, Wuhan 430074, China; <email>cryao@cug.edu.cn</email> (R.C.); <email>duanyl@cug.edu.cn</email> (Y.D.); <email>swli@cug.edu.cn</email> (S.L.); State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430078, China 
700 1 |a Li, Xinchuan  |u School of Computer Science, China University of Geosciences, Wuhan 430074, China; <email>cryao@cug.edu.cn</email> (R.C.); <email>duanyl@cug.edu.cn</email> (Y.D.); <email>swli@cug.edu.cn</email> (S.L.); State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430078, China 
773 0 |t ISPRS International Journal of Geo-Information  |g vol. 14, no. 1 (2025), p. 18 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159465191/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159465191/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159465191/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch