HGeoKG: A Hierarchical Geographic Knowledge Graph for Geographic Knowledge Reasoning
Zapisane w:
| Wydane w: | ISPRS International Journal of Geo-Information vol. 14, no. 1 (2025), p. 18 |
|---|---|
| 1. autor: | |
| Kolejni autorzy: | , , , , |
| Wydane: |
MDPI AG
|
| Hasła przedmiotowe: | |
| Dostęp online: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etykiety: |
Nie ma etykietki, Dołącz pierwszą etykiete!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3159465191 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2220-9964 | ||
| 024 | 7 | |a 10.3390/ijgi14010018 |2 doi | |
| 035 | |a 3159465191 | ||
| 045 | 2 | |b d20250101 |b d20250131 | |
| 084 | |a 231472 |2 nlm | ||
| 100 | 1 | |a Li, Tailong |u School of Future Technology, China University of Geosciences, Wuhan 430074, China; <email>ltl@cug.edu.cn</email> (T.L.); <email>yaohong@cug.edu.cn</email> (H.Y.) | |
| 245 | 1 | |a HGeoKG: A Hierarchical Geographic Knowledge Graph for Geographic Knowledge Reasoning | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a The Geographic Knowledge Graph (GeoKG) serves as an effective method for organizing geographic knowledge, playing a crucial role in facilitating semantic interoperability across heterogeneous data sources. However, existing GeoKGs are limited by a lack of hierarchical modeling and insufficient coverage of geographic knowledge (e.g., limited entity types, inadequate attributes, and insufficient spatial relationships), which hinders their effective use and representation of semantic content. This paper presents HGeoKG, a hierarchical geographic knowledge graph that comprehensively models hierarchical structures, attributes, and spatial relationships of multi-type geographic entities. Based on the concept and construction methods of HGeoKG, this paper developed a dataset named HGeoKG-MHT-670K. Statistical analysis reveals significant regional heterogeneity and long-tail distribution patterns in HGeoKG-MHT-670K. Furthermore, extensive geographic knowledge reasoning experiments on HGeoKG-MHT-670K show that most knowledge graph embedding (KGE) models fail to achieve satisfactory performance. This suggests the need to accommodate spatial heterogeneity across different regions and improve the embedding quality of long-tail geographic entities. HGeoKG serves as both a reference for GeoKG construction and a benchmark for geographic knowledge reasoning, driving the development of geographical artificial intelligence (GeoAI). | |
| 610 | 4 | |a Wikipedia | |
| 653 | |a Geographical distribution | ||
| 653 | |a Internet | ||
| 653 | |a Artificial intelligence | ||
| 653 | |a Datasets | ||
| 653 | |a Construction | ||
| 653 | |a Ontology | ||
| 653 | |a Statistical analysis | ||
| 653 | |a Construction methods | ||
| 653 | |a Knowledge representation | ||
| 653 | |a Heterogeneity | ||
| 653 | |a Patchiness | ||
| 653 | |a Regional development | ||
| 653 | |a Geography | ||
| 653 | |a Semantics | ||
| 653 | |a Spatial heterogeneity | ||
| 653 | |a Reasoning | ||
| 653 | |a Regions | ||
| 653 | |a Encyclopedias | ||
| 653 | |a Statistical methods | ||
| 653 | |a Graphical representations | ||
| 653 | |a Embedding | ||
| 653 | |a Distribution patterns | ||
| 700 | 1 | |a Chen, Renyao |u School of Computer Science, China University of Geosciences, Wuhan 430074, China; <email>cryao@cug.edu.cn</email> (R.C.); <email>duanyl@cug.edu.cn</email> (Y.D.); <email>swli@cug.edu.cn</email> (S.L.) | |
| 700 | 1 | |a Duan, Yilin |u School of Computer Science, China University of Geosciences, Wuhan 430074, China; <email>cryao@cug.edu.cn</email> (R.C.); <email>duanyl@cug.edu.cn</email> (Y.D.); <email>swli@cug.edu.cn</email> (S.L.) | |
| 700 | 1 | |a Yao, Hong |u School of Future Technology, China University of Geosciences, Wuhan 430074, China; <email>ltl@cug.edu.cn</email> (T.L.); <email>yaohong@cug.edu.cn</email> (H.Y.); School of Computer Science, China University of Geosciences, Wuhan 430074, China; <email>cryao@cug.edu.cn</email> (R.C.); <email>duanyl@cug.edu.cn</email> (Y.D.); <email>swli@cug.edu.cn</email> (S.L.); State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430078, China | |
| 700 | 1 | |a Li, Shengwen |u School of Computer Science, China University of Geosciences, Wuhan 430074, China; <email>cryao@cug.edu.cn</email> (R.C.); <email>duanyl@cug.edu.cn</email> (Y.D.); <email>swli@cug.edu.cn</email> (S.L.); State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430078, China | |
| 700 | 1 | |a Li, Xinchuan |u School of Computer Science, China University of Geosciences, Wuhan 430074, China; <email>cryao@cug.edu.cn</email> (R.C.); <email>duanyl@cug.edu.cn</email> (Y.D.); <email>swli@cug.edu.cn</email> (S.L.); State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan 430078, China | |
| 773 | 0 | |t ISPRS International Journal of Geo-Information |g vol. 14, no. 1 (2025), p. 18 | |
| 786 | 0 | |d ProQuest |t Advanced Technologies & Aerospace Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3159465191/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3159465191/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3159465191/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |