Application of Convolutional Neural Networks and Recurrent Neural Networks in Food Safety

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Foods vol. 14, no. 2 (2025), p. 247
المؤلف الرئيسي: Ding, Haohan
مؤلفون آخرون: Hou, Haoke, Wang, Long, Cui, Xiaohui, Yu, Wei, Wilson, David I
منشور في:
MDPI AG
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text + Graphics
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3159465973
003 UK-CbPIL
022 |a 2304-8158 
024 7 |a 10.3390/foods14020247  |2 doi 
035 |a 3159465973 
045 2 |b d20250101  |b d20251231 
084 |a 231462  |2 nlm 
100 1 |a Ding, Haohan  |u Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; <email>dinghaohan@jiangnan.edu.cn</email>; School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China; <email>6243110027@stu.jiangnan.edu.cn</email> (H.H.); <email>6233115022@stu.jiangnan.edu.cn</email> (L.W.) 
245 1 |a Application of Convolutional Neural Networks and Recurrent Neural Networks in Food Safety 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This review explores the application of convolutional neural networks (CNNs) and recurrent neural networks (RNNs) in food safety detection and risk prediction. This paper highlights the advantages of CNNs in image processing and feature recognition, as well as the powerful capabilities of RNNs (especially their variant LSTM) in time series data modeling. This paper also makes a comparative analysis in many aspects: Firstly, the advantages and disadvantages of traditional food safety detection and risk prediction methods are compared with deep learning technologies such as CNNs and RNNs. Secondly, the similarities and differences between CNNs and fully connected neural networks in processing image data are analyzed. Furthermore, the advantages and disadvantages of RNNs and traditional statistical modeling methods in processing time series data are discussed. Finally, the application directions of CNNs in food safety detection and RNNs in food safety risk prediction are compared. This paper also discusses combining these deep learning models with technologies such as the Internet of Things (IoT), blockchain, and federated learning to improve the accuracy and efficiency of food safety detection and risk warning. Finally, this paper mentions the limitations of RNNs and CNNs in the field of food safety, as well as the challenges in the interpretability of the model, and suggests the use of interpretable artificial intelligence (XAI) technology to improve the transparency of the model. 
653 |a Food safety 
653 |a Humidity 
653 |a Comparative analysis 
653 |a Artificial intelligence 
653 |a Datasets 
653 |a Deep learning 
653 |a Internet of Things 
653 |a Artificial neural networks 
653 |a Defective products 
653 |a Image processing 
653 |a Statistical models 
653 |a Chromatography 
653 |a Food processing 
653 |a Machine learning 
653 |a Time series 
653 |a Suppliers 
653 |a Feature recognition 
653 |a Efficiency 
653 |a Data analysis 
653 |a Raw materials 
653 |a Analytical chemistry 
653 |a Predictions 
653 |a Traditional foods 
653 |a Neural networks 
653 |a Recurrent neural networks 
653 |a Public health 
653 |a Statistical methods 
653 |a Supply chains 
653 |a Information processing 
653 |a Safety 
653 |a Federated learning 
653 |a Blockchain 
700 1 |a Hou, Haoke  |u School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China; <email>6243110027@stu.jiangnan.edu.cn</email> (H.H.); <email>6233115022@stu.jiangnan.edu.cn</email> (L.W.) 
700 1 |a Wang, Long  |u School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China; <email>6243110027@stu.jiangnan.edu.cn</email> (H.H.); <email>6233115022@stu.jiangnan.edu.cn</email> (L.W.) 
700 1 |a Cui, Xiaohui  |u Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; <email>dinghaohan@jiangnan.edu.cn</email>; School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China 
700 1 |a Yu, Wei  |u Department of Chemical & Materials Engineering, University of Auckland, Auckland 1010, New Zealand; <email>w.yu@auckland.ac.nz</email> 
700 1 |a Wilson, David I  |u Electrical and Electronic Engineering Department, Auckland University of Technology, Auckland 1010, New Zealand; <email>diwilson@aut.ac.nz</email> 
773 0 |t Foods  |g vol. 14, no. 2 (2025), p. 247 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159465973/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159465973/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159465973/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch