Applying Data Analysis and Machine Learning Methods to Predict Permafrost Coast Erosion

Guardado en:
Detalles Bibliográficos
Publicado en:Geosciences vol. 15, no. 1 (2025), p. 2
Autor principal: Bogatova, Daria
Otros Autores: Ogorodov, Stanislav
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3159470463
003 UK-CbPIL
022 |a 2076-3263 
024 7 |a 10.3390/geosciences15010002  |2 doi 
035 |a 3159470463 
045 2 |b d20250101  |b d20250131 
084 |a 231468  |2 nlm 
100 1 |a Bogatova, Daria 
245 1 |a Applying Data Analysis and Machine Learning Methods to Predict Permafrost Coast Erosion 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study aims to establish a scientific and methodological basis for predicting shoreline positions using modern data analysis and machine learning techniques. The focus area is a 5 km section of the Ural coast along Baydaratskaya Bay in the Kara Sea. This region was selected due to its diverse geomorphological features, varied lithological composition, and significant presence of permafrost processes, all contributing to complex patterns of shoreline change. Applying advanced data analysis methods, including correlation and factor analysis, enables the identification of natural signs that highlight areas of active coastal retreat. These insights are valuable in arctic development planning, as they help to recognize zones at the highest risk of significant shoreline transformation. The erosion process can be conceptualized as comprising two primary components to construct a predictive model for coastal retreat. The first is a random variable that encapsulates the effects of local structural changes in the coastline alongside fluctuations due to climatic conditions. This component can be statistically characterized to define a confidence interval for natural variability. The second component represents a systematic shift, which reflects regular changes in average shoreline positions over time. This systematic component is more suited to predictive modeling. Thus, modern information processing methods allow us to move from descriptive to numerical assessments of the dynamics of coastal processes. The goal is ultimately to support responsible and sustainable development in the highly sensitive arctic region. 
651 4 |a Alaska 
651 4 |a United States--US 
651 4 |a Kara Sea 
653 |a Permafrost 
653 |a Shoreline changes 
653 |a Datasets 
653 |a Coastal erosion 
653 |a Sea level 
653 |a Lithology 
653 |a Geomorphology 
653 |a Sediments 
653 |a Data analysis 
653 |a Machine learning 
653 |a Natural variability 
653 |a Coastal dynamics 
653 |a Shorelines 
653 |a Climate change 
653 |a Prediction models 
653 |a Coasts 
653 |a Remote sensing 
653 |a Arctic zone 
653 |a Climatic conditions 
653 |a Shoreline protection 
653 |a Random variables 
653 |a Sustainable development 
653 |a Information processing 
653 |a Data processing 
653 |a Discriminant analysis 
653 |a Erosion processes 
653 |a Factor analysis 
653 |a Statistical analysis 
653 |a Beaches 
653 |a Learning algorithms 
653 |a Ice environments 
653 |a Coastal processes 
653 |a Artificial intelligence 
653 |a Neural networks 
653 |a Morphology 
653 |a Coastal plains 
700 1 |a Ogorodov, Stanislav 
773 0 |t Geosciences  |g vol. 15, no. 1 (2025), p. 2 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159470463/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159470463/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159470463/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch