Noise Elimination for Wide Field Electromagnetic Data via Improved Dung Beetle Optimized Gated Recurrent Unit

Guardado en:
Detalles Bibliográficos
Publicado en:Geosciences vol. 15, no. 1 (2025), p. 8
Autor principal: Liu, Zhongyuan
Otros Autores: Zhang, Xian, Li, Diquan, Liu, Shupeng, Cao, Ke
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3159470981
003 UK-CbPIL
022 |a 2076-3263 
024 7 |a 10.3390/geosciences15010008  |2 doi 
035 |a 3159470981 
045 2 |b d20250101  |b d20250131 
084 |a 231468  |2 nlm 
100 1 |a Liu, Zhongyuan  |u Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment, Monitoring Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China; <email>205001043@csu.edu.cn</email> (Z.L.); <email>lidiquan@csu.edu.cn</email> (D.L.) 
245 1 |a Noise Elimination for Wide Field Electromagnetic Data via Improved Dung Beetle Optimized Gated Recurrent Unit 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Noise profoundly affects the quality of electromagnetic data, and selecting the appropriate hyperparameters for machine learning models poses a significant challenge. Consequently, the current machine learning denoising techniques fall short in delivering precise processing of Wide Field Electromagnetic Method (WFEM) data. To eliminate the noise, this paper presents an electromagnetic data denoising approach based on the improved dung beetle optimized (IDBO) gated recurrent unit (GRU) and its application. Firstly, Spatial Pyramid Matching (SPM) chaotic mapping, variable spiral strategy, Levy flight mechanism, and adaptive T-distribution variation perturbation strategy were utilized to enhance the DBO algorithm. Subsequently, the mean square error is employed as the fitness of the IDBO algorithm to achieve the hyperparameter optimization of the GRU algorithm. Finally, the IDBO-GRU method is applied to the denoising processing of WFEM data. Experiments demonstrate that the optimization capacity of the IDBO algorithm is conspicuously superior to other intelligent optimization algorithms, and the IDBO-GRU algorithm surpasses the probabilistic neural network (PNN) and the GRU algorithm in the denoising accuracy of WFEM data. Moreover, the time domain of the processed WFEM data is more in line with periodic signal characteristics, its overall data quality is significantly enhanced, and the electric field curve is more stable. Therefore, the IDBO-GRU is more adept at processing the time domain sequence, and the application results also validate that the proposed method can offer technical support for electromagnetic inversion interpretation. 
653 |a Deep learning 
653 |a Wavelet transforms 
653 |a Algorithms 
653 |a Signal processing 
653 |a Neural networks 
653 |a Time domain analysis 
653 |a Machine learning 
653 |a Statistical analysis 
653 |a Learning algorithms 
653 |a Efficiency 
653 |a System theory 
653 |a Adaptive algorithms 
653 |a Artificial intelligence 
653 |a Fourier transforms 
653 |a Suspended particulate matter 
653 |a Signal quality 
653 |a Noise reduction 
653 |a Optimization 
653 |a Electric fields 
653 |a Information processing 
653 |a Optimization algorithms 
653 |a Noise 
700 1 |a Zhang, Xian  |u Hunan Provincial Key Laboratory of Finance & Economics Big Data Science and Technology, School of Information Technology and Management, Hunan University of Finance and Economics, Changsha 410205, China 
700 1 |a Li, Diquan  |u Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment, Monitoring Ministry of Education, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China; <email>205001043@csu.edu.cn</email> (Z.L.); <email>lidiquan@csu.edu.cn</email> (D.L.) 
700 1 |a Liu, Shupeng  |u Hunan Provincial Key Laboratory of Finance & Economics Big Data Science and Technology, School of Information Technology and Management, Hunan University of Finance and Economics, Changsha 410205, China 
700 1 |a Cao, Ke  |u Hunan Provincial Key Laboratory of Finance & Economics Big Data Science and Technology, School of Information Technology and Management, Hunan University of Finance and Economics, Changsha 410205, China 
773 0 |t Geosciences  |g vol. 15, no. 1 (2025), p. 8 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159470981/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159470981/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159470981/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch