Chinese Mathematical Knowledge Entity Recognition Based on Linguistically Motivated Bidirectional Encoder Representation from Transformers

Salvato in:
Dettagli Bibliografici
Pubblicato in:Information vol. 16, no. 1 (2025), p. 42
Autore principale: Song, Wei
Altri autori: He, Zheng, Ma, Shuaiqi, Zhang, Mingze, Guo, Wei, Keqing Ning
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3159490350
003 UK-CbPIL
022 |a 2078-2489 
024 7 |a 10.3390/info16010042  |2 doi 
035 |a 3159490350 
045 2 |b d20250101  |b d20251231 
084 |a 231474  |2 nlm 
100 1 |a Song, Wei  |u School of Information Science and Technology, North China University of Technology, Beijing 100144, China; <email>songwei@ncut.edu.cn</email> (W.S.); <email>zhenghe@mail.ncut.edu.cn</email> (H.Z.); <email>shuaiqi@mail.ncut.edu.cn</email> (S.M.) 
245 1 |a Chinese Mathematical Knowledge Entity Recognition Based on Linguistically Motivated Bidirectional Encoder Representation from Transformers 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a We assessed whether constructing a mathematical knowledge graph for a knowledge question-answering system or a course recommendation system, Named Entity Recognition (NER), is indispensable. The accuracy of its recognition directly affects the actual performance of these subsequent tasks. In order to improve the accuracy of mathematical knowledge entity recognition and provide effective support for subsequent functionalities, this paper adopts the latest pre-trained language model, LERT, combined with a Bidirectional Gated Recurrent Unit (BiGRU), Iterated Dilated Convolutional Neural Networks (IDCNNs), and Conditional Random Fields (CRFs), to construct the LERT-BiGRU-IDCNN-CRF model. First, LERT provides context-related word vectors, and then the BiGRU captures both long-distance and short-distance information, the IDCNN retrieves local information, and finally the CRF is decoded to output the corresponding labels. Experimental results show that the accuracy of this model when recognizing mathematical concepts and theorem entities is 97.22%, the recall score is 97.47%, and the F1 score is 97.34%. This model can accurately recognize the required entities, and, through comparison, this method outperforms the current state-of-the-art entity recognition models. 
653 |a Language 
653 |a Accuracy 
653 |a Machine learning 
653 |a Dictionaries 
653 |a Deep learning 
653 |a Recommender systems 
653 |a Artificial intelligence 
653 |a Conditional random fields 
653 |a Information retrieval 
653 |a Recognition 
653 |a Artificial neural networks 
653 |a Neural networks 
653 |a Graphical representations 
653 |a Knowledge representation 
653 |a Semantics 
653 |a Natural language 
700 1 |a He, Zheng  |u School of Information Science and Technology, North China University of Technology, Beijing 100144, China; <email>songwei@ncut.edu.cn</email> (W.S.); <email>zhenghe@mail.ncut.edu.cn</email> (H.Z.); <email>shuaiqi@mail.ncut.edu.cn</email> (S.M.) 
700 1 |a Ma, Shuaiqi  |u School of Information Science and Technology, North China University of Technology, Beijing 100144, China; <email>songwei@ncut.edu.cn</email> (W.S.); <email>zhenghe@mail.ncut.edu.cn</email> (H.Z.); <email>shuaiqi@mail.ncut.edu.cn</email> (S.M.) 
700 1 |a Zhang, Mingze  |u State Grid Jilin Electric Power Research Institute, Changchun 130015, China; <email>mingzezhang@petalmail.com</email> 
700 1 |a Guo, Wei  |u School of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China 
700 1 |a Keqing Ning  |u School of Information Science and Technology, North China University of Technology, Beijing 100144, China; <email>songwei@ncut.edu.cn</email> (W.S.); <email>zhenghe@mail.ncut.edu.cn</email> (H.Z.); <email>shuaiqi@mail.ncut.edu.cn</email> (S.M.) 
773 0 |t Information  |g vol. 16, no. 1 (2025), p. 42 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159490350/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159490350/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159490350/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch