Improving Short-Term Photovoltaic Power Generation Forecasting with a Bidirectional Temporal Convolutional Network Enhanced by Temporal Bottlenecks and Attention Mechanisms

Guardat en:
Dades bibliogràfiques
Publicat a:Electronics vol. 14, no. 2 (2025), p. 214
Autor principal: Gan, Jianhong
Altres autors: Lin, Xi, Chen, Tinghui, Fan, Changyuan, Peiyang Wei, Li, Zhibin, Huo, Yaoran, Zhang, Fan, Liu, Jia, He, Tongli
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3159490798
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14020214  |2 doi 
035 |a 3159490798 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Gan, Jianhong  |u College of Software Engineering, Chengdu University of Information Technology, Chengdu 610225, China 
245 1 |a Improving Short-Term Photovoltaic Power Generation Forecasting with a Bidirectional Temporal Convolutional Network Enhanced by Temporal Bottlenecks and Attention Mechanisms 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Accurate photovoltaic (PV) power forecasting is crucial for effective smart grid management, given the intermittent nature of PV generation. To address these challenges, this paper proposes the Temporal Bottleneck-enhanced Bidirectional Temporal Convolutional Network with Multi-Head Attention and Autoregressive (TB-BTCGA) model. It introduces a temporal bottleneck structure and Deep Residual Shrinkage Network (DRSN) into the Temporal Convolutional Network (TCN), improving feature extraction and reducing redundancy. Additionally, the model transforms the traditional TCN into a bidirectional TCN (BiTCN), allowing it to capture both past and future dependencies while expanding the receptive field with fewer layers. The integration of an autoregressive (AR) model optimizes the linear extraction of features, while the inclusion of multi-head attention and the Bidirectional Gated Recurrent Unit (BiGRU) further strengthens the model’s ability to capture both short-term and long-term dependencies in the data. Experiments on complex datasets, including weather forecast data, station meteorological data, and power data, demonstrate that the proposed TB-BTCGA model outperforms several state-of-the-art deep learning models in prediction accuracy. Specifically, in single-step forecasting using data from three PV stations in Hebei, China, the model reduces Mean Absolute Error (MAE) by 38.53% and Root Mean Square Error (RMSE) by 33.12% and increases the coefficient of determination (<inline-formula>R2</inline-formula>) by 7.01% compared to the baseline TCN model. Additionally, in multi-step forecasting, the model achieves a reduction of 54.26% in the best MAE and 52.64% in the best RMSE across various time horizons. These results underscore the TB-BTCGA model’s effectiveness and its strong potential for real-time photovoltaic power forecasting in smart grids. 
653 |a Feature extraction 
653 |a Accuracy 
653 |a Solar energy 
653 |a Root-mean-square errors 
653 |a Autoregressive processes 
653 |a Neural networks 
653 |a Effectiveness 
653 |a Weather forecasting 
653 |a Methods 
653 |a Error reduction 
653 |a Algorithms 
653 |a Smart grid 
653 |a Time series 
653 |a Real time 
653 |a Meteorological data 
653 |a Photovoltaic cells 
653 |a Redundancy 
700 1 |a Lin, Xi  |u College of Software Engineering, Chengdu University of Information Technology, Chengdu 610225, China 
700 1 |a Chen, Tinghui  |u College of Software Engineering, Chengdu University of Information Technology, Chengdu 610225, China 
700 1 |a Fan, Changyuan  |u College of Software Engineering, Chengdu University of Information Technology, Chengdu 610225, China 
700 1 |a Peiyang Wei  |u College of Software Engineering, Chengdu University of Information Technology, Chengdu 610225, China 
700 1 |a Li, Zhibin  |u College of Software Engineering, Chengdu University of Information Technology, Chengdu 610225, China; Xinjiang Technical Institute of Physics &amp; Chemistry, Chinese Academy of Sciences, Urumqi 830011, China 
700 1 |a Huo, Yaoran  |u Information &amp; Communication Company, State Grid Sichuan Electric Power Company, Chengdu 610041, China 
700 1 |a Zhang, Fan  |u College of Software Engineering, Chengdu University of Information Technology, Chengdu 610225, China 
700 1 |a Liu, Jia  |u College of Software Engineering, Chengdu University of Information Technology, Chengdu 610225, China 
700 1 |a He, Tongli  |u College of Software Engineering, Chengdu University of Information Technology, Chengdu 610225, China 
773 0 |t Electronics  |g vol. 14, no. 2 (2025), p. 214 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159490798/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159490798/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159490798/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch