MARC

LEADER 00000nab a2200000uu 4500
001 3159498929
003 UK-CbPIL
022 |a 2048-8637 
022 |a 2048-8645 
035 |a 3159498929 
045 2 |b d20241001  |b d20241031 
084 |a 183529  |2 nlm 
100 1 |a Gunarathna, Buddhini  |u University of Moratuwa, Colombo, Sri Lanka 
245 1 |a Predictive Regression Modeling for Forecasting Graduation Duration in Online Offsite Degree Program 
260 |b Academic Conferences International Limited  |c Oct 2024 
513 |a Conference Proceedings 
520 3 |a The demand for Information Technology (IT) professionals continues to rise across various sectors, where they play vital roles. However, the supply of IT graduates often fails to meet industry needs and this is a huge problem for the Sri Lankan IT Industry (National IT-BPM Workforce Survey - 2019). In this context, this study presents a predictive regression modelling approach to predict graduation duration in the Bachelor of Information Technology (BIT) degree program at the University of Moratuwa, Sri Lanka. It integrates demographic data-student district, birth year, AL results, OL maths grade, gender, employability status, occupation, and AL stream-along with academic performance indicators like diploma completions and higher diploma completions. After evaluating the suggested features, the key findings indicate the significance of certain features, notably the number of semesters taken to complete the diploma, higher diploma, and the degree. Additionally, demographic factors such as district, birth year, AL results, OL maths grade, gender, and employability status were found to be important. The regression analysis was carried out using the Orange data mining tool (Orange Data Mining). Various algorithms, including random forest, neural network, linear regression, and k-nearest neighbours (kNN), were used to develop predictive models. By adjusting parameters such as metrics, weights, number of neighbours, number of iterations, and training dataset size, the models were optimised to better fit the dataset. Training and testing the models revealed consistent error metrics, including MSE, RMSE, MAE, and R72, validating the accuracy of predictions. By considering the least and reasonable error in each model, the most suitable model to fit the given dataset was selected. The prediction model accurately forecasted graduation duration for subsequent academic batches, demonstrating its effectiveness in predicting student progress in the program. This research contributes to understanding the factors influencing graduation duration in a distance learning context and provides insights for educational institutions to optimise program planning and student support initiatives. Additionally, it is a good indicator to the companies to gain a better understanding of the availability of future workforce. 
651 4 |a Sri Lanka 
653 |a Students 
653 |a Datasets 
653 |a Demographics 
653 |a Curricula 
653 |a Data mining 
653 |a Open source software 
653 |a Context 
653 |a Error analysis 
653 |a Distance learning 
653 |a Colleges & universities 
653 |a Business metrics 
653 |a Prediction models 
653 |a Academic achievement 
653 |a Root-mean-square errors 
653 |a Workforce 
653 |a Algorithms 
653 |a Regression analysis 
653 |a Diplomas 
653 |a Graduation rate 
653 |a Neural networks 
653 |a Information technology 
653 |a Predictions 
653 |a Learning Modalities 
653 |a National Surveys 
653 |a Teacher Student Ratio 
653 |a Dropout Rate 
653 |a Grade Point Average 
653 |a School Demography 
653 |a Lecture Method 
653 |a Employment Potential 
653 |a At Risk Students 
653 |a Program Development 
653 |a Computer Software 
653 |a Regression (Statistics) 
653 |a Institutional Characteristics 
653 |a Graduates 
653 |a Influence of Technology 
653 |a Distance Education 
653 |a Educational Technology 
653 |a Learning Management Systems 
653 |a Labor Force 
700 1 |a Nanayakkara, Vishaka  |u University of Moratuwa, Colombo, Sri Lanka 
700 1 |a Karunarathna, Buddhika  |u University of Moratuwa, Colombo, Sri Lanka 
700 1 |a De Silva, Tharanee  |u University of Moratuwa, Colombo, Sri Lanka 
773 0 |t European Conference on e-Learning  |g (Oct 2024), p. 104 
786 0 |d ProQuest  |t Education Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159498929/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3159498929/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159498929/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch