Dubovsky’s Class of Mathematical Models for Describing Economic Cycles with Heredity Effects

Guardado en:
Bibliografiske detaljer
Udgivet i:Fractal and Fractional vol. 9, no. 1 (2025), p. 19
Hovedforfatter: Makarov, Danil
Andre forfattere: Parovik, Roman, Rakhmonov, Zafar
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3159507321
003 UK-CbPIL
022 |a 2504-3110 
024 7 |a 10.3390/fractalfract9010019  |2 doi 
035 |a 3159507321 
045 2 |b d20250101  |b d20251231 
100 1 |a Makarov, Danil  |u Department of Applied Mathematics and Computer Analysis, National University of Uzbekistan Named After Mirzo Ulugbek, Tashkent 100174, Uzbekistan; <email>danil.makarov.pk@yandex.ru</email> (D.M.); 
245 1 |a Dubovsky’s Class of Mathematical Models for Describing Economic Cycles with Heredity Effects 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The article is devoted to the study of economic cycles and crises, which are studied within the framework of the theory of N.D. Kondratiev long waves (K-waves). The object of the study is the fractional mathematical models of S. V. Dubovsky, consisting of two nonlinear differential equations of fractional order and describing the dynamics of the efficiency of new technologies and the efficiency of capital productivity, taking into account constant and variable heredity. Fractional mathematical models also take into account the dependence of the rate of accumulation on capital productivity and the influx of external investment and new technological solutions. The effects of heredity lead to a delayed effect of the response of the system in question to the impact. The property of heredity in mathematical models is taken into account using fractional derivatives of constant and variable orders in the sense of Gerasimov–Caputo. The fractional mathematical models of S. V. Dubovsky are further studied numerically using the Adams–Bashforth–Moulton algorithm. Using a numerical algorithm, oscillograms and phase trajectories were constructed for various values and model parameters. It is shown that the fractional mathematical models of S. V. Dubovsky may have limit cycles, which are not always stable. 
653 |a Calculus 
653 |a Heredity 
653 |a Mathematical analysis 
653 |a Mathematical models 
653 |a Nonlinear differential equations 
653 |a Capital depreciation 
653 |a Cauchy problems 
653 |a Numerical analysis 
653 |a Productivity 
653 |a Business cycles 
653 |a Variables 
653 |a Algorithms 
653 |a Gross Domestic Product--GDP 
653 |a Economic theory 
653 |a Nonlinear dynamics 
653 |a Production functions 
653 |a Ordinary differential equations 
653 |a Technology 
653 |a Efficiency 
700 1 |a Parovik, Roman  |u Department of Applied Mathematics and Computer Analysis, National University of Uzbekistan Named After Mirzo Ulugbek, Tashkent 100174, Uzbekistan; <email>danil.makarov.pk@yandex.ru</email> (D.M.); ; Laboratory of Physical Process Modeling, Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS, 684034 Paratunka, Russia 
700 1 |a Rakhmonov, Zafar  |u Department of Applied Mathematics and Computer Analysis, National University of Uzbekistan Named After Mirzo Ulugbek, Tashkent 100174, Uzbekistan; <email>danil.makarov.pk@yandex.ru</email> (D.M.); 
773 0 |t Fractal and Fractional  |g vol. 9, no. 1 (2025), p. 19 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159507321/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159507321/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159507321/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch