An Efficient GPU-Accelerated Algorithm for Solving Dynamic Response of Fluid-Saturated Porous Media

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 2 (2025), p. 181
Autor principal: Lin, Wancang
Otros Autores: Zhou, Qinglong, Chen, Xinyi, Shi, Wenhao, Ai, Jie
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3159525864
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13020181  |2 doi 
035 |a 3159525864 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Lin, Wancang 
245 1 |a An Efficient GPU-Accelerated Algorithm for Solving Dynamic Response of Fluid-Saturated Porous Media 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The traditional finite element program is executed on the CPU; however, it is challenging for the CPU to compute the ultra-large scale finite element model. In this paper, we present a set of efficient algorithms based on GPU acceleration technology for the dynamic response of fluid-saturated porous media, named PNAM, encompassing the assembly of the global matrix and the iterative solution of equations. In the assembly part, the CSR storage format of the global matrix is directly obtained from the element matrix. For data with two million degrees of freedom, it merely takes approximately 1 s to generate all the data of global matrices, which is significantly superior to the CPU version. Regarding the iterative solution of equations, a novel algorithm based on the CUDA kernel function is proposed. For a data set with two million degrees of freedom, it takes only about 0.05 s to compute an iterative step and transfer the data to the CPU. The program is designed to calculate either in single or double precision. The change in precision has little impact on the assembly of the global matrix, but the calculation time of double precision is generally 1.5 to 2 times that of single precision in the iterative solution part for a model with 2 million degrees of freedom. PNAM has high computational efficiency and great compatibility, which can be used to solve not only saturated fluid problems but also a variety of other problems. 
653 |a Sparsity 
653 |a Assembly 
653 |a Propagation 
653 |a Porous media 
653 |a Finite element method 
653 |a Accuracy 
653 |a Dynamic response 
653 |a Graphics processing units 
653 |a Iterative methods 
653 |a Algorithms 
653 |a Mathematical models 
653 |a Finite element analysis 
653 |a Kernel functions 
653 |a Degrees of freedom 
653 |a Iterative solution 
653 |a Efficiency 
700 1 |a Zhou, Qinglong 
700 1 |a Chen, Xinyi 
700 1 |a Shi, Wenhao 
700 1 |a Ai, Jie 
773 0 |t Mathematics  |g vol. 13, no. 2 (2025), p. 181 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159525864/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159525864/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159525864/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch