Joint Transmit Waveform and Receive Mismatched Filter Design to Suppress Range Sidelobe

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:Remote Sensing vol. 17, no. 2 (2025), p. 175
Kaituhi matua: Wang, Hairui
Ētahi atu kaituhi: Tao, Haihong, Zhong, Tiantian, Li, Wendi
I whakaputaina:
MDPI AG
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3159535309
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17020175  |2 doi 
035 |a 3159535309 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Wang, Hairui 
245 1 |a Joint Transmit Waveform and Receive Mismatched Filter Design to Suppress Range Sidelobe 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Pulse compression technology can augment the likelihood of target discernment without degradation and without amplifying system hardware requisites. However, radar-communication integrated waveforms may cause mismatches in reception due to communication modulation, leading to increased loss in processing gain (LPG). This method aims to achieve communication transmission while suppressing near-range sidelobe interference (NRSI) with a minor sacrifice in LPG. An environment-based weighted mismatched filter (EWMF) design methodology is proposed to attenuate NRSI to the requisite level, with further control of LPG possible by adjusting communication modulation parameters. Moreover, the alternating direction method of multipliers is employed to jointly optimize the integrated waveform and filter design. The effectiveness of this method is demonstrated using the average sidelobe level over a specified region as the performance metric. Theoretical evaluation and experimental results confirm the applicability of waveforms using EWMF, effectively suppressing NRSI, and this method is suitable for all waveforms based on pulse compression processing. Notably, it offers cost-reduction advantages without requiring modifications to the radar transmitter or receiver. 
653 |a Waveforms 
653 |a Sidelobes 
653 |a Modulation 
653 |a Communication 
653 |a Radar 
653 |a Optimization techniques 
653 |a Signal processing 
653 |a Maximum likelihood method 
653 |a Parameter modification 
653 |a Convex analysis 
653 |a Design 
653 |a Radar transmitters 
653 |a Filter design (mathematics) 
653 |a Codes 
653 |a Algorithms 
653 |a Compression 
653 |a Pulse compression 
653 |a Design optimization 
653 |a Sidelobe reduction 
653 |a Efficiency 
653 |a Parameter estimation 
700 1 |a Tao, Haihong 
700 1 |a Zhong, Tiantian 
700 1 |a Li, Wendi 
773 0 |t Remote Sensing  |g vol. 17, no. 2 (2025), p. 175 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159535309/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159535309/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159535309/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch