An Effective Robust Total Least-Squares Solution Based on “Total Residuals” for Seafloor Geodetic Control Point Positioning

Spremljeno u:
Bibliografski detalji
Izdano u:Remote Sensing vol. 17, no. 2 (2025), p. 276
Glavni autor: Lv, Zhipeng
Daljnji autori: Xiao, Guorui
Izdano:
MDPI AG
Teme:
Online pristup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 3159535585
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17020276  |2 doi 
035 |a 3159535585 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Lv, Zhipeng  |u School of Transportation Engineering, East China Jiaotong University, Nanchang 330031, China; <email>zhipenglv@ecjtu.edu.cn</email>; Xi’an Institute of Surveying and Mapping, Xi’an 710054, China; Jiangxi Provincial Key Laboratory of Comprehensive Stereoscopic Traffic Information Perception and Fusion, Nanchang 330031, China 
245 1 |a An Effective Robust Total Least-Squares Solution Based on “Total Residuals” for Seafloor Geodetic Control Point Positioning 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Global Navigation Satellite System/Acoustic (GNSS/A) underwater positioning technology is attracting more and more attention as an important technology for building the marine Positioning, Navigation, and Timing (PNT) system. The random error of the tracking point coordinate is also an important error source that affects the accuracy of GNSS/A underwater positioning. When considering its effect on the mathematical model of GNSS/A underwater positioning, the Total Least-Squares (TLS) estimator can be used to obtain the optimal position estimate of the seafloor transponder, with weak consistency and asymptotic unbiasedness. However, the tracking point coordinates and acoustic ranging observations are inevitably contaminated by outliers because of human mistakes, failure of malfunctioning instruments, and unfavorable environmental conditions. A robust alternative needs to be introduced to suppress the adverse effect of outliers. The conventional Robust TLS (RTLS) strategy is to adopt the selection weight iteration method based on each single prediction residual. Please note that the validity of robust estimation depends on a good agreement between residuals and true errors. Unlike the Least-Squares (LS) estimation, the TLS estimation is unsuitable for residual prediction. In this contribution, we propose an effective RTLS_Eqn estimator based on “total residuals” or “equation residuals” for GNSS/A underwater positioning. This proposed robust alternative holds its robustness in both observation and structure spaces. To evaluate the statistical performance of the proposed RTLS estimator for GNSS/A underwater positioning, Monte Carlo simulation experiments are performed with different depth and error configurations under the emulational marine environment. Several statistical indicators and the average iteration time are calculated for data analysis. The experimental results show that the Root Mean Square Error (RMSE) values of the RTLS_Eqn estimator are averagely improved by 12.22% and 10.27%, compared to the existing RTLS estimation method in a shallow sea of 150 m and a deep sea of 3000 m for abnormal error situations, respectively. The proposed RTLS estimator is superior to the existing RTLS estimation method for GNSS/A underwater positioning. 
653 |a Statistics 
653 |a Outliers (statistics) 
653 |a Marine environment 
653 |a Accuracy 
653 |a Underwater structures 
653 |a Deep sea 
653 |a Acoustic tracking 
653 |a Configuration management 
653 |a Mathematical models 
653 |a Offshore structures 
653 |a Underwater construction 
653 |a Data processing 
653 |a Environmental conditions 
653 |a Ocean floor 
653 |a Error analysis 
653 |a Tracking 
653 |a Human error 
653 |a Marine technology 
653 |a Data analysis 
653 |a Random errors 
653 |a Monte Carlo simulation 
653 |a Robust control 
653 |a Asymptotic methods 
653 |a Iterative methods 
653 |a Root-mean-square errors 
653 |a Design 
653 |a Stochastic models 
653 |a Methods 
653 |a Algorithms 
653 |a Satellite observation 
653 |a Acoustics 
653 |a Least squares 
653 |a Underwater 
653 |a Global navigation satellite system 
653 |a Parameter estimation 
700 1 |a Xiao, Guorui  |u School of Geospatial Information, Information Engineering University, Zhengzhou 450001, China 
773 0 |t Remote Sensing  |g vol. 17, no. 2 (2025), p. 276 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159535585/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159535585/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159535585/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch