A Novel Oil Spill Dataset Augmentation Framework Using Object Extraction and Image Blending Techniques

Guardat en:
Dades bibliogràfiques
Publicat a:Remote Sensing vol. 17, no. 2 (2025), p. 336
Autor principal: Akhmedov, Farkhod
Altres autors: Khujamatov, Halimjon, Abdullaev, Mirjamol, Heung-Seok Jeon
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3159535659
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17020336  |2 doi 
035 |a 3159535659 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Akhmedov, Farkhod  |u Department of Computer Engineering, Gachon University Sujeong-Gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea; <email>farhod34@gachon.ac.kr</email> (F.A.); <email>khujamatov@gachon.ac.kr</email> (H.K.) 
245 1 |a A Novel Oil Spill Dataset Augmentation Framework Using Object Extraction and Image Blending Techniques 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Oil spills pose significant threats to marine and coastal ecosystems, biodiversity and local economies, necessitating efficient and accurate detection systems. Traditional detection methods, such as manual inspection and satellite imaging, are often resource-intensive and time consuming. This study addresses these challenges by developing a novel approach to enhance the quality and diversity of oil spill datasets. Several studies have mentioned that the quality and size of a dataset is crucial for training robust vision-based deep learning models. The proposed methodology combines advanced object extraction techniques with traditional data augmentation strategies to generate high quality and realistic oil spill images under various oceanic conditions. A key innovation in this work is the application of image blending techniques, which ensure seamless integration of target oil spill features into diverse environmental ocean contexts. To facilitate accessibility and usability, a Gradio-based web application was developed, featuring a user-friendly interface that allows users to input target and source images, customize augmentation parameters, and execute the augmentation process effectively. By enriching oil spill datasets with realistic and varied scenarios, this research aimed to improve the generalizability and accuracy of deep learning models for oil spill detection. For this, we proposed three key approaches, including oil spill dataset creation from an internet source, labeled oil spill regions extracted for blending with a background image, and the creation of a Gradio web application for simplifying the oil spill dataset generation process. 
651 4 |a Uzbekistan 
651 4 |a Persian Gulf 
651 4 |a Gulf of Mexico 
653 |a Oil spills 
653 |a Feature extraction 
653 |a Environmental cleanup 
653 |a Deep learning 
653 |a Datasets 
653 |a Ocean models 
653 |a Applications programs 
653 |a Satellite imagery 
653 |a Marine ecosystems 
653 |a Environmental impact 
653 |a Machine learning 
653 |a Pollution detection 
653 |a Local economy 
653 |a Data augmentation 
653 |a Blending 
653 |a Remote sensing 
653 |a Environmental conditions 
653 |a Biodiversity 
653 |a Image quality 
653 |a Surveillance 
653 |a Object recognition 
653 |a Coastal ecosystems 
653 |a Satellites 
700 1 |a Khujamatov, Halimjon  |u Department of Computer Engineering, Gachon University Sujeong-Gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea; <email>farhod34@gachon.ac.kr</email> (F.A.); <email>khujamatov@gachon.ac.kr</email> (H.K.) 
700 1 |a Abdullaev, Mirjamol  |u Department of Information Systems and Technologies, Tashkent State University of Economics, Tashkent 100066, Uzbekistan; <email>abdullaevm@tsue.uz</email> 
700 1 |a Heung-Seok Jeon  |u Department of Computer Engineering, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Chungcheongbuk-do, Republic of Korea 
773 0 |t Remote Sensing  |g vol. 17, no. 2 (2025), p. 336 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159535659/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159535659/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159535659/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch