Spatiotemporal Variation of Water Use Efficiency and Its Responses to Climate Change in the Yellow River Basin from 1982 to 2018

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:Remote Sensing vol. 17, no. 2 (2025), p. 316
Váldodahkki: Li, Jie
Eará dahkkit: Qin, Fen, Wang, Yingping, Zhao, Xiuyan, Yu, Mengxiao, Chen, Songjia, Jiang, Jun, Wang, Linhua, Yan, Junhua
Almmustuhtton:
MDPI AG
Fáttát:
Liŋkkat:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 3159539036
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17020316  |2 doi 
035 |a 3159539036 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Li, Jie  |u National Ecological Science Data Center Guangdong Branch, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China<email>lhwang@scbg.ac.cn</email> (L.W.); South China National Botanical Garden, Guangzhou 510650, China 
245 1 |a Spatiotemporal Variation of Water Use Efficiency and Its Responses to Climate Change in the Yellow River Basin from 1982 to 2018 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The ecosystem water use efficiency (WUE) plays a critical role in many aspects of the global carbon cycle, water management, and ecological services. However, the response mechanisms and driving processes of WUE need to be further studied. This research was conducted based on Gross Primary Productivity (GPP), Evapotranspiration (ET), meteorological station data, and land use/cover data, and the methods of Ensemble Empirical Mode Decomposition (EEMD), trend variation analysis, the Mann–Kendall Significant Test (M-K test), and Partial Correlation Analysis (PCA) methods. Our study revealed the spatio-temporal trend of WUE and its influencing mechanism in the Yellow River Basin (YRB) and compared the differences in WUE change before and after the implementation of the Returned Farmland to Forestry and Grassland Project in 2000. The results show that (1) the WUE of the YRB showed a significant increase trend at a rate of 0.56 × 10−2 gC·kg−1·H2O·a−1 (p < 0.05) from 1982 to 2018. The area showing a significant increase in WUE (47.07%, Slope > 0, p < 0.05) was higher than the area with a significant decrease (14.64%, Slope < 0, p < 0.05). The region of significant increase in WUE in 2000–2018 (45.35%, Slope > 0, p < 0.05) was higher than that of 1982–2000 (8.23%, Slope > 0, p < 0.05), which was 37.12% higher in comparison. (2) Forest WUE (1.267 gC·kg−1·H2O) > Cropland WUE (0.972 gC·kg−1·H2O) > Grassland WUE (0.805 gC·kg−1·H2O) under different land cover types. Forest ecosystem WUE has the highest rate of increase (0.79 × 10−2 gC·kg−1·H2O·a−1) from 2000 to 2018. Forest ecosystem WUE increased by 0.082 gC·kg−1·H2O after 2000. (3) precipitation (37.98%, R > 0, p < 0.05) and SM (10.30%, R > 0, p < 0.05) are the main climatic factors affecting WUE in the YRB. A total of 70.39% of the WUE exhibited an increasing trend, which is mainly attributed to the simultaneous increase in GPP and ET, and the rate of increasing GPP is higher than the rate of increasing ET. This study could provide a scientific reference for policy decision-making on the terrestrial carbon cycle and biodiversity conservation. 
651 4 |a China 
651 4 |a Loess Plateau 
651 4 |a Yellow River 
653 |a Carbon cycle 
653 |a River basins 
653 |a Agricultural land 
653 |a Datasets 
653 |a Water shortages 
653 |a Grasslands 
653 |a Correlation analysis 
653 |a Evapotranspiration 
653 |a Rivers 
653 |a Land use 
653 |a Climate change 
653 |a Efficiency 
653 |a Precipitation 
653 |a Remote sensing 
653 |a Forest ecosystems 
653 |a Carbon 
653 |a Water management 
653 |a Terrestrial ecosystems 
653 |a Methods 
653 |a Ecosystems 
653 |a Decision making 
653 |a Water use 
653 |a Agricultural production 
653 |a Trends 
653 |a Water use efficiency 
653 |a Water resources management 
653 |a Time series 
653 |a Land cover 
653 |a Computer centers 
653 |a Vegetation 
653 |a Weather stations 
653 |a River ecology 
653 |a Biodiversity 
653 |a Information sources 
653 |a Forestry 
700 1 |a Qin, Fen  |u College of Geography and Environmental Science, Henan University, Kaifeng 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng 475004, China; Henan Industrial Technology Academy of Spatio-Temporal Big Data, Henan University, Kaifeng 475004, China 
700 1 |a Wang, Yingping  |u CSIRO Oceans and Atmosphere, Aspendale, VIC 3195, Australia; &lt;email&gt;yingping.wang@csiro.au&lt;/email&gt; 
700 1 |a Zhao, Xiuyan  |u School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China 
700 1 |a Yu, Mengxiao  |u National Ecological Science Data Center Guangdong Branch, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China&lt;email&gt;lhwang@scbg.ac.cn&lt;/email&gt; (L.W.); South China National Botanical Garden, Guangzhou 510650, China 
700 1 |a Chen, Songjia  |u National Ecological Science Data Center Guangdong Branch, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China&lt;email&gt;lhwang@scbg.ac.cn&lt;/email&gt; (L.W.); South China National Botanical Garden, Guangzhou 510650, China 
700 1 |a Jiang, Jun  |u National Ecological Science Data Center Guangdong Branch, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China&lt;email&gt;lhwang@scbg.ac.cn&lt;/email&gt; (L.W.); South China National Botanical Garden, Guangzhou 510650, China 
700 1 |a Wang, Linhua  |u National Ecological Science Data Center Guangdong Branch, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China&lt;email&gt;lhwang@scbg.ac.cn&lt;/email&gt; (L.W.); South China National Botanical Garden, Guangzhou 510650, China 
700 1 |a Yan, Junhua  |u National Ecological Science Data Center Guangdong Branch, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China&lt;email&gt;lhwang@scbg.ac.cn&lt;/email&gt; (L.W.); South China National Botanical Garden, Guangzhou 510650, China 
773 0 |t Remote Sensing  |g vol. 17, no. 2 (2025), p. 316 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159539036/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159539036/fulltextwithgraphics/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159539036/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch