Facial expression recognition based on local–global information reasoning and spatial distribution of landmark features

Guardado en:
Detalles Bibliográficos
Publicado en:The Visual Computer vol. 41, no. 1 (Jan 2025), p. 535
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:In the field of facial expression recognition (FER), two main trends point to the data-driven FER and feature-driven FER exist. The former focused on the data problems (e.g., sample imbalance and multimodal fusion), while the latter explored the facial expression features. As the feature-driven FER is more important than the data-driven FER, for deeper mining of facial features, we propose an expression recognition model based on Local–Global information Reasoning and Landmark Spatial Distributions. Particularly to reason local–global information, multiple attention mechanisms with the modified residual module are designed for the Res18-LG module. In addition, taking the spatial topology of facial landmarks into account, a topological relationship graph of landmarks and a two-layer graph neural network are introduced to extract spatial distribution features. Finally, the experiment results on FERPlus and RAF-DB datasets demonstrate that our model outperforms the state-of-the-art methods.
ISSN:0178-2789
1432-2315
DOI:10.1007/s00371-024-03345-y
Fuente:Advanced Technologies & Aerospace Database