Tool Wear State Monitoring in Titanium Alloy Milling Based on Wavelet Packet and TTAO-CNN-BiLSTM-AM

Պահպանված է:
Մատենագիտական մանրամասներ
Հրատարակված է:Processes vol. 13, no. 1 (2025), p. 13
Հիմնական հեղինակ: Yang, Zongshuo
Այլ հեղինակներ: Li, Li, Zhang, Yunfeng, Jiang, Zhengquan, Liu, Xuegang
Հրապարակվել է:
MDPI AG
Խորագրեր:
Առցանց հասանելիություն:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!

MARC

LEADER 00000nab a2200000uu 4500
001 3159548541
003 UK-CbPIL
022 |a 2227-9717 
024 7 |a 10.3390/pr13010013  |2 doi 
035 |a 3159548541 
045 2 |b d20250101  |b d20251231 
084 |a 231553  |2 nlm 
100 1 |a Yang, Zongshuo  |u College of Engineering and Technology, Southwest University, Chongqing 400715, China 
245 1 |a Tool Wear State Monitoring in Titanium Alloy Milling Based on Wavelet Packet and TTAO-CNN-BiLSTM-AM 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a To effectively monitor the nonlinear wear variation of tools during the processing of titanium alloys, this study proposes a hybrid deep neural network fault diagnosis model that integrates the triangulation topology aggregation optimizer (TTAO), convolutional neural network (CNN), bidirectional long short-term memory network (BiLSTM), and attention mechanism (AM). Firstly, vibration signals from the machine tool spindle are acquired and subjected to the wavelet packet transform (WPT) to extract multi-frequency band energy features as model inputs. Then, the CNN and BiLSTM modules capture the features and temporal relationships of the input signals. Finally, introduction of the AM, combined with the TTAO algorithm, automatically extracts deep features, overcoming issues such as local optima and slow convergence in traditional neural networks, thereby enhancing the accuracy and efficiency of tool wear state recognition. The experimental results demonstrate that the proposed model achieves an average accuracy rate of 98.649% in predicting tool wear states, outperforming traditional backpropagation (BP) networks and standard CNN models. 
653 |a Accuracy 
653 |a Deep learning 
653 |a Titanium 
653 |a Wavelet transforms 
653 |a Artificial neural networks 
653 |a Back propagation networks 
653 |a Topology 
653 |a Machine tools 
653 |a Frequencies 
653 |a Cutting tools 
653 |a Manufacturing 
653 |a Long short-term memory 
653 |a Wear rate 
653 |a Tool wear 
653 |a Efficiency 
653 |a Titanium base alloys 
653 |a Research methodology 
653 |a Fault diagnosis 
653 |a Titanium alloys 
653 |a Milling (machining) 
653 |a Neural networks 
653 |a Triangulation 
653 |a Algorithms 
653 |a Information processing 
653 |a Heat resistance 
700 1 |a Li, Li  |u College of Engineering and Technology, Southwest University, Chongqing 400715, China 
700 1 |a Zhang, Yunfeng  |u College of Engineering and Technology, Southwest University, Chongqing 400715, China 
700 1 |a Jiang, Zhengquan  |u College of Engineering and Technology, Southwest University, Chongqing 400715, China 
700 1 |a Liu, Xuegang  |u Chongqing General Industry (Group) Co., Ltd., Chongqing 401336, China 
773 0 |t Processes  |g vol. 13, no. 1 (2025), p. 13 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159548541/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159548541/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159548541/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch