Modeling and Evaluation of Attention Mechanism Neural Network Based on Industrial Time Series Data

Guardado en:
Bibliografiske detaljer
Udgivet i:Processes vol. 13, no. 1 (2025), p. 184
Hovedforfatter: Zhou, Jianqiao
Andre forfattere: Wang, Zhu, Liu, Jiaxuan, Luo, Xionglin, Chen, Maoyin
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3159549940
003 UK-CbPIL
022 |a 2227-9717 
024 7 |a 10.3390/pr13010184  |2 doi 
035 |a 3159549940 
045 2 |b d20250101  |b d20251231 
084 |a 231553  |2 nlm 
100 1 |a Zhou, Jianqiao  |u Department of Automation, College of Artificial Intelligence, China University of Petroleum Beijing, Beijing 102249, China; <email>jianqiaozhou_cup@163.com</email> (J.Z.); <email>luoxl@cup.edu.cn</email> (X.L.); <email>mychen@cup.edu.cn</email> (M.C.) 
245 1 |a Modeling and Evaluation of Attention Mechanism Neural Network Based on Industrial Time Series Data 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Chemical process control systems are complex, and modeling the controlled object is the first task in automatic control and optimal design. Most chemical process modeling experiments require test signals to be applied to the process, which may lead to production interruptions or cause safety accidents. Therefore, this paper proposes an improved transformer model based on a self-attention mechanism for modeling industrial processes. Then, an evaluation mechanism based on root mean square error (RMSE) and Kullback–Leibler divergence (KLD) metrics is designed to obtain more appropriate model parameters. The Variational Auto-Encoder (VAE) network is used to compute the associated KLD. Finally, a real nonlinear dynamic process in the petrochemical industry is modeled and evaluated using the proposed methodology to predict the time series data of the process. This study demonstrates the validity of the proposed transformer model and illustrates the versatility of using an integrated modeling, evaluation, and prediction scheme for nonlinear dynamic processes in process industries. The scheme is of great importance for the field of industrial soft measurements as well as for deep learning-based time series prediction. In addition, the issue of a suitable time domain for the prediction is discussed. 
653 |a Attention task 
653 |a Divergence 
653 |a Deep learning 
653 |a Neural networks 
653 |a Control systems design 
653 |a Predictions 
653 |a Modelling 
653 |a Root-mean-square errors 
653 |a Time series 
653 |a Variables 
653 |a Petrochemicals industry 
653 |a Distributed control systems 
653 |a Design 
653 |a Natural language processing 
653 |a Dynamical systems 
653 |a Machine learning 
653 |a Nonlinear dynamics 
653 |a Industrial production 
653 |a Time measurement 
653 |a Automatic control 
700 1 |a Wang, Zhu  |u Department of Automation, College of Artificial Intelligence, China University of Petroleum Beijing, Beijing 102249, China; <email>jianqiaozhou_cup@163.com</email> (J.Z.); <email>luoxl@cup.edu.cn</email> (X.L.); <email>mychen@cup.edu.cn</email> (M.C.) 
700 1 |a Liu, Jiaxuan  |u Research Institute of Petroleum Exploration & Development, PetroChina Company Limited, Beijing 100083, China; <email>liujiaxuan59@petrochina.com.cn</email> 
700 1 |a Luo, Xionglin  |u Department of Automation, College of Artificial Intelligence, China University of Petroleum Beijing, Beijing 102249, China; <email>jianqiaozhou_cup@163.com</email> (J.Z.); <email>luoxl@cup.edu.cn</email> (X.L.); <email>mychen@cup.edu.cn</email> (M.C.) 
700 1 |a Chen, Maoyin  |u Department of Automation, College of Artificial Intelligence, China University of Petroleum Beijing, Beijing 102249, China; <email>jianqiaozhou_cup@163.com</email> (J.Z.); <email>luoxl@cup.edu.cn</email> (X.L.); <email>mychen@cup.edu.cn</email> (M.C.) 
773 0 |t Processes  |g vol. 13, no. 1 (2025), p. 184 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159549940/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159549940/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159549940/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch