Symmetries of Bernstein Polynomial Differentiation Matrices and Applications to Initial Value Problems

Guardado en:
Detalles Bibliográficos
Publicado en:Symmetry vol. 17, no. 1 (2025), p. 47
Autor principal: Mirkov, Nikola
Otros Autores: Fabiano, Nicola, Nikezić, Dušan, Stojiljković, Vuk, Ilić, Milica
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3159553818
003 UK-CbPIL
022 |a 2073-8994 
024 7 |a 10.3390/sym17010047  |2 doi 
035 |a 3159553818 
045 2 |b d20250101  |b d20251231 
084 |a 231635  |2 nlm 
100 1 |a Mirkov, Nikola  |u ‘Vinča’ Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia; <email>nicola.fabiano@gmail.com</email> (N.F.); <email>milica.ilic@vin.bg.ac.rs</email> (M.I.) 
245 1 |a Symmetries of Bernstein Polynomial Differentiation Matrices and Applications to Initial Value Problems 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In this study, we discuss the symmetries underlying Bernstein polynomial differentiation matrices, as they are used in the collocation method approach to approximate solutions of initial and boundary value problems. The symmetries are brought into connection with those of the Chebyshev pseudospectral method (Chebyshev polynomial differentiation matrices). The treatment discussed here enables a faster and more accurate generation of differentiation matrices. The results are applied in numerical solutions of several initial value problems for the partial differential equation of convection–diffusion reaction type. The method described herein demonstrates the combination of advanced numerical techniques like polynomial interpolation, stability-preserving timestepping, and transformation methods to solve a challenging nonlinear PDE efficiently. The use of Bernstein polynomials offers a high degree of accuracy for spatial discretization, and the CGL nodes improve the stability of the polynomial approximation. This analysis shows that exploiting symmetry in the differentiation matrices, combined with the wise choice of collocation nodes (CGL), leads to both accurate and efficient numerical methods for solving PDEs and accuracy that approach pseudospectral methods that use well-known orthogonal polynomials such as Chebyshev polynomials. 
653 |a Differentiation 
653 |a Accuracy 
653 |a Partial differential equations 
653 |a Mathematical analysis 
653 |a Polynomials 
653 |a Nodes 
653 |a Collocation methods 
653 |a Chebyshev approximation 
653 |a Approximation 
653 |a Numerical analysis 
653 |a Diffusion rate 
653 |a Methods 
653 |a Stability 
653 |a Numerical methods 
653 |a Boundary value problems 
653 |a Spectral methods 
700 1 |a Fabiano, Nicola  |u ‘Vinča’ Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia; <email>nicola.fabiano@gmail.com</email> (N.F.); <email>milica.ilic@vin.bg.ac.rs</email> (M.I.) 
700 1 |a Nikezić, Dušan  |u ‘Vinča’ Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia; <email>nicola.fabiano@gmail.com</email> (N.F.); <email>milica.ilic@vin.bg.ac.rs</email> (M.I.) 
700 1 |a Stojiljković, Vuk  |u Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; <email>vuk.stojiljkovic999@gmail.com</email> 
700 1 |a Ilić, Milica  |u ‘Vinča’ Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia; <email>nicola.fabiano@gmail.com</email> (N.F.); <email>milica.ilic@vin.bg.ac.rs</email> (M.I.) 
773 0 |t Symmetry  |g vol. 17, no. 1 (2025), p. 47 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159553818/abstract/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159553818/fulltextwithgraphics/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159553818/fulltextPDF/embedded/CH9WPLCLQHQD1J4S?source=fedsrch