NIGWO-iCaps NN: A Method for the Fault Diagnosis of Fiber Optic Gyroscopes Based on Capsule Neural Networks

Guardado en:
Detalles Bibliográficos
Publicado en:Micromachines vol. 16, no. 1 (2025), p. 73
Autor principal: Lu, Nan
Otros Autores: Zhang, Huaqiang, Dong, Chunmei, Li, Hongtao, Chen, Yu
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3159553825
003 UK-CbPIL
022 |a 2072-666X 
024 7 |a 10.3390/mi16010073  |2 doi 
035 |a 3159553825 
045 2 |b d20250101  |b d20251231 
084 |a 231537  |2 nlm 
100 1 |a Lu, Nan  |u Department of Instrumentation, School of Mechanical Engineering, West Campus, Shandong University of Technology, Zibo 255000, China; <email>lunan20001125@163.com</email> (N.L.); <email>dcmjob@126.com</email> (C.D.); <email>myyolo@163.com</email> (H.L.) 
245 1 |a NIGWO-iCaps NN: A Method for the Fault Diagnosis of Fiber Optic Gyroscopes Based on Capsule Neural Networks 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a When using a fiber optic gyroscope as the core measurement element in an inertial navigation system, its work stability and reliability directly affect the accuracy of the navigation system. The modeling and fault diagnosis of the gyroscope is of great significance in ensuring the high accuracy and long endurance of the inertial system. Traditional diagnostic models often encounter challenges in terms of reliability and accuracy, for example, difficulties in feature extraction, high computational cost, and long training time. To address these challenges, this paper proposes a new fault diagnostic model that performs a fault diagnosis of gyroscopes using the enhanced capsule neural network (iCaps NN) optimized by the improved gray wolf algorithm (NIGWO). The wavelet packet transform (WPT) is used to construct a two-dimensional feature vector matrix, and the deep feature extraction module (DFE) is added to extract deep-level information to maximize the fault features. Then, an improved gray wolf algorithm combined with the adaptive algorithm (Adam) is proposed to determine the optimal values of the model parameters, which improves the optimization performance. The dynamic routing mechanism is utilized to greatly reduce the model training time. In this paper, effectiveness experiments were carried out on the simulation dataset and real dataset, respectively; the diagnostic accuracy of the fault diagnosis method in this paper reached 99.41% on the simulation dataset; the loss value in the real dataset converged to 0.005 with the increase in the number of iterations; and the average diagnostic accuracy converged to 95.42%. The results show that the diagnostic accuracy of the NIGWO-iCaps NN model proposed in this paper is improved by 13.51% compared with the traditional diagnostic methods. It effectively confirms that the method in this paper is capable of efficient and accurate fault diagnosis of FOG and has strong generalization ability. 
653 |a Navigation systems 
653 |a Feature extraction 
653 |a Fiber optic gyroscopes 
653 |a Accuracy 
653 |a Wavelet transforms 
653 |a Mathematical models 
653 |a Fiber optics 
653 |a Trouble shooting 
653 |a Signal processing 
653 |a Systems stability 
653 |a Computer simulation 
653 |a Inertial navigation 
653 |a Adaptive algorithms 
653 |a Propagation 
653 |a Machine learning 
653 |a Simulation 
653 |a Velocity 
653 |a Datasets 
653 |a Fault diagnosis 
653 |a Neural networks 
653 |a Artificial intelligence 
653 |a Network reliability 
653 |a Optimization 
653 |a Fatigue tests 
653 |a Diagnostic systems 
653 |a Methods 
653 |a Algorithms 
700 1 |a Zhang, Huaqiang  |u Department of Instrumentation, School of Mechanical Engineering, West Campus, Shandong University of Technology, Zibo 255000, China; <email>lunan20001125@163.com</email> (N.L.); <email>dcmjob@126.com</email> (C.D.); <email>myyolo@163.com</email> (H.L.) 
700 1 |a Dong, Chunmei  |u Department of Instrumentation, School of Mechanical Engineering, West Campus, Shandong University of Technology, Zibo 255000, China; <email>lunan20001125@163.com</email> (N.L.); <email>dcmjob@126.com</email> (C.D.); <email>myyolo@163.com</email> (H.L.) 
700 1 |a Li, Hongtao  |u Department of Instrumentation, School of Mechanical Engineering, West Campus, Shandong University of Technology, Zibo 255000, China; <email>lunan20001125@163.com</email> (N.L.); <email>dcmjob@126.com</email> (C.D.); <email>myyolo@163.com</email> (H.L.) 
700 1 |a Chen, Yu  |u Beijing Institute of Space Launch Technology, Beijing 100076, China; <email>chenyu@aspe.buaa.edu.cn</email> 
773 0 |t Micromachines  |g vol. 16, no. 1 (2025), p. 73 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159553825/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159553825/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159553825/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch