A Dual-Stage Processing Architecture for Unmanned Aerial Vehicle Object Detection and Tracking Using Lightweight Onboard and Ground Server Computations

Salvato in:
Dettagli Bibliografici
Pubblicato in:Technologies vol. 13, no. 1 (2025), p. 35
Autore principale: Ntousis, Odysseas
Altri autori: Makris, Evangelos, Tsanakas, Panayiotis, Pavlatos, Christos
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3159556561
003 UK-CbPIL
022 |a 2227-7080 
024 7 |a 10.3390/technologies13010035  |2 doi 
035 |a 3159556561 
045 2 |b d20250101  |b d20251231 
084 |a 231637  |2 nlm 
100 1 |a Ntousis, Odysseas  |u School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., 15780 Athens, Greece; <email>vmakris@mail.ntua.gr</email> (E.M.); <email>panag@cs.ntua.gr</email> (P.T.) 
245 1 |a A Dual-Stage Processing Architecture for Unmanned Aerial Vehicle Object Detection and Tracking Using Lightweight Onboard and Ground Server Computations 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a UAVs are widely used for multiple tasks, which in many cases require autonomous processing and decision making. This autonomous function often requires significant computational capabilities that cannot be integrated into the UAV due to weight or cost limitations, making the distribution of the workload and the combination of the results produced necessary. In this paper, a dual-stage processing architecture for object detection and tracking in Unmanned Aerial Vehicles (UAVs) is presented, focusing on efficient resource utilization and real-time performance. The proposed system delegates lightweight detection tasks to onboard hardware while offloading computationally intensive processes to a ground server. The UAV is equipped with a Raspberry Pi for onboard data processing, utilizing an Intel Neural Compute Stick 2 (NCS2) for accelerated object detection. Specifically, YOLOv5n is selected as the onboard model. The UAV transmits selected frames to the ground server, which handles advanced tracking, trajectory prediction, and target repositioning using state-of-the-art deep learning models. Communication between the UAV and the server is maintained through a high-speed Wi-Fi link, with a fallback to a 4G connection when needed. The ground server, equipped with an NVIDIA A40 GPU, employs YOLOv8x for object detection and DeepSORT for multi-object tracking. The proposed architecture ensures real-time tracking with minimal latency, making it suitable for mission-critical UAV applications such as surveillance and search and rescue. The results demonstrate the system’s robustness in various environments, highlighting its potential for effective object tracking under limited onboard computational resources. The system achieves recall and accuracy scores as high as 0.53 and 0.74, respectively, using the remote server, and is capable of re-identifying a significant portion of objects of interest lost by the onboard system, measured at approximately 70%. 
653 |a Computer architecture 
653 |a Fourier transforms 
653 |a Unmanned aerial vehicles 
653 |a Sensors 
653 |a Network latency 
653 |a Onboard data processing 
653 |a Multiple target tracking 
653 |a Tracking 
653 |a Resource utilization 
653 |a Queries 
653 |a Kalman filters 
653 |a Real time 
653 |a Vehicles 
653 |a Search and rescue missions 
700 1 |a Makris, Evangelos  |u School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., 15780 Athens, Greece; <email>vmakris@mail.ntua.gr</email> (E.M.); <email>panag@cs.ntua.gr</email> (P.T.) 
700 1 |a Tsanakas, Panayiotis  |u School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., 15780 Athens, Greece; <email>vmakris@mail.ntua.gr</email> (E.M.); <email>panag@cs.ntua.gr</email> (P.T.) 
700 1 |a Pavlatos, Christos  |u Digital Development Technologies (DDTech) P.C., 59c Evdomi St., P. Fokaia, 19013 Athens, Greece; <email>christos.pavlatos@hafa.haf.gr</email>; Hellenic Air Force Academy, Dekelia Air Base, Acharnes, 13671 Athens, Greece 
773 0 |t Technologies  |g vol. 13, no. 1 (2025), p. 35 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159556561/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159556561/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159556561/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch