Predictive Modeling of Total Real and Reactive Power Losses in Contingency Systems Using Function-Fitting Neural Networks with Graphical User Interface

Guardat en:
Dades bibliogràfiques
Publicat a:Technologies vol. 13, no. 1 (2025), p. 15
Autor principal: Alfredo Bonini Neto
Altres autors: de Queiroz, Alexandre, Giovana Gonçalves da Silva, Gifalli, André, Nunes de Souza, André, Garbelini, Enio
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3159559448
003 UK-CbPIL
022 |a 2227-7080 
024 7 |a 10.3390/technologies13010015  |2 doi 
035 |a 3159559448 
045 2 |b d20250101  |b d20251231 
084 |a 231637  |2 nlm 
100 1 |a Alfredo Bonini Neto  |u School of Sciences and Engineering, São Paulo State University (UNESP), Tupã 17602-496, SP, Brazil; <email>enio.garb@gmail.com</email> 
245 1 |a Predictive Modeling of Total Real and Reactive Power Losses in Contingency Systems Using Function-Fitting Neural Networks with Graphical User Interface 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Technical power losses in power systems are unavoidable, caused by factors such as transformer impedance, conductor resistance, equipment inefficiencies, line reactance, and phase imbalances. Reducing these losses is essential for improving system efficiency. This study introduces an innovative approach using Artificial Neural Networks (ANN) combined with the graphical interface to predict complete curves of real and reactive power losses in power systems under various contingencies. The key advantage of this methodology is its speed, allowing quick estimation of power loss curves both in normal and contingency conditions, whether mild or severe. ANN models excel at capturing the nonlinear behavior of power systems, eliminating the need for iterative methods commonly used in traditional approaches. The results showed that the ANN performed effectively, with a mean squared error during training below the specified threshold. For samples not included in the training set, the network accurately estimated 99% of the real and reactive power losses within the specified range, with residuals around 10−3 and an overall accuracy rate of 99% between the desired and obtained outputs. Additionally, a Graphical User Interface (GUI) was implemented to facilitate user interaction, allowing for easy visualization of power-loss predictions and real-time adjustments. 
653 |a User interface 
653 |a Reactive power 
653 |a Accuracy 
653 |a Graphical user interface 
653 |a Resistance factors 
653 |a Nonlinear systems 
653 |a Real time 
653 |a Prediction models 
653 |a Iterative methods 
653 |a Contingency 
653 |a Reactance 
653 |a Artificial neural networks 
653 |a Neural networks 
700 1 |a de Queiroz, Alexandre  |u School of Engineering, São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil; <email>alexandre.queiroz@unesp.br</email> (A.d.Q.); <email>giovana.goncalves@unesp.br</email> (G.G.d.S.); <email>andre.gifalli@unesp.br</email> (A.G.); <email>andre.souza@unesp.br</email> (A.N.d.S.) 
700 1 |a Giovana Gonçalves da Silva  |u School of Engineering, São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil; <email>alexandre.queiroz@unesp.br</email> (A.d.Q.); <email>giovana.goncalves@unesp.br</email> (G.G.d.S.); <email>andre.gifalli@unesp.br</email> (A.G.); <email>andre.souza@unesp.br</email> (A.N.d.S.) 
700 1 |a Gifalli, André  |u School of Engineering, São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil; <email>alexandre.queiroz@unesp.br</email> (A.d.Q.); <email>giovana.goncalves@unesp.br</email> (G.G.d.S.); <email>andre.gifalli@unesp.br</email> (A.G.); <email>andre.souza@unesp.br</email> (A.N.d.S.) 
700 1 |a Nunes de Souza, André  |u School of Engineering, São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil; <email>alexandre.queiroz@unesp.br</email> (A.d.Q.); <email>giovana.goncalves@unesp.br</email> (G.G.d.S.); <email>andre.gifalli@unesp.br</email> (A.G.); <email>andre.souza@unesp.br</email> (A.N.d.S.) 
700 1 |a Garbelini, Enio  |u School of Sciences and Engineering, São Paulo State University (UNESP), Tupã 17602-496, SP, Brazil; <email>enio.garb@gmail.com</email> 
773 0 |t Technologies  |g vol. 13, no. 1 (2025), p. 15 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159559448/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159559448/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159559448/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch