Spatial and Temporal Variability Management for All Farmers: A Cell-Size Approach to Enhance Coffee Yields and Optimize Inputs

Guardado en:
Detalles Bibliográficos
Publicado en:Plants vol. 14, no. 2 (2025), p. 169
Autor principal: Eudocio Rafael Otavio da Silva
Otros Autores: Thiago Lima da Silva, Marcelo Chan Fu Wei, de Souza, Ricardo Augusto, Molin, José Paulo
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3159572709
003 UK-CbPIL
022 |a 2223-7747 
024 7 |a 10.3390/plants14020169  |2 doi 
035 |a 3159572709 
045 2 |b d20250101  |b d20251231 
084 |a 231551  |2 nlm 
100 1 |a Eudocio Rafael Otavio da Silva  |u Laboratory of Precision Agriculture (LAP), Department of Biosystems Engineering, “Luiz de Queiroz” College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo, Brazil; <email>marcelochan@usp.br</email> (M.C.F.W.); <email>jpmolin@usp.br</email> (J.P.M.) 
245 1 |a Spatial and Temporal Variability Management for All Farmers: A Cell-Size Approach to Enhance Coffee Yields and Optimize Inputs 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Coffee yield exhibits plant-level variability; however, due to operational issues, especially in smaller operations, the scouting and management of coffee yields are often hindered. Thus, a cell-size approach at the field level is proposed as a simple and efficient solution to overcome these constraints. This study aimed to present the feasibility of a cell-size approach to characterize spatio-temporal coffee production based on soil and plant attributes and yield (biennial effects) and to assess strategies for enhanced soil fertilization recommendations and economic results. The spatio-temporal study was conducted using a database composed of yield and soil and plant attributes from four harvest seasons of coffee plantation in the southeast region of Brazil. We used small plots as cells, where soil, leaf, and yield samples were taken, and the average value of each variable was assigned to each cell. The results indicated that macro- and micronutrient contents in the soil and leaves exhibited spatio-temporal heterogeneity between cells, suggesting that customized coffee tree management practices could be employed. The cell-size sampling strategy identified regions of varying yield over time and associated them with their biennial effect, enabling the identification of profitable areas to direct resource and input management in subsequent seasons. This approach optimized the recommendation of potassium and phosphate fertilizers on farms, demonstrating that localized management is feasible even with low spatial resolution. The cell-size approach proved to be adequate on two coffee farms and can be applied in scenarios with limited resources for high-density sampling, especially for small- and medium-sized farms. 
653 |a Physiology 
653 |a Agricultural production 
653 |a Coffee 
653 |a Plant cells 
653 |a Fertilization 
653 |a Spatial discrimination 
653 |a Sampling 
653 |a Feasibility studies 
653 |a Leaves 
653 |a Farms 
653 |a Heterogeneity 
653 |a Variability 
653 |a Agriculture 
653 |a Farmers 
653 |a Soils 
653 |a Spatial resolution 
653 |a Cell size 
653 |a Cost control 
653 |a Management 
653 |a Climate change 
653 |a Microbiota 
653 |a Carbohydrates 
700 1 |a Thiago Lima da Silva  |u Laboratory of Agricultural Machinery and Precision Agriculture (LAMAP), Department of Biosystems Engineering, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo, Brazil; <email>thiagolim@usp.br</email> 
700 1 |a Marcelo Chan Fu Wei  |u Laboratory of Precision Agriculture (LAP), Department of Biosystems Engineering, “Luiz de Queiroz” College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo, Brazil; <email>marcelochan@usp.br</email> (M.C.F.W.); <email>jpmolin@usp.br</email> (J.P.M.) 
700 1 |a de Souza, Ricardo Augusto  |u Faculty of Civil Engineering, Architecture and Urbanism (FECFAU), State University of Campinas, Campinas 13083-970, São Paulo, Brazil; <email>ricosouza@alumni.usp.br</email> 
700 1 |a Molin, José Paulo  |u Laboratory of Precision Agriculture (LAP), Department of Biosystems Engineering, “Luiz de Queiroz” College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo, Brazil; <email>marcelochan@usp.br</email> (M.C.F.W.); <email>jpmolin@usp.br</email> (J.P.M.) 
773 0 |t Plants  |g vol. 14, no. 2 (2025), p. 169 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159572709/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3159572709/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159572709/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch