Zero-sum Differential Games Guidance Law Accounting for Impact-Angle-Constrained Using Adaptive Dynamic Programming

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Intelligent & Robotic Systems vol. 111, no. 1 (Mar 2025), p. 21
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3159574470
003 UK-CbPIL
022 |a 0921-0296 
022 |a 1573-0409 
024 7 |a 10.1007/s10846-024-02217-w  |2 doi 
035 |a 3159574470 
045 2 |b d20250301  |b d20250331 
084 |a 137834  |2 nlm 
245 1 |a Zero-sum Differential Games Guidance Law Accounting for Impact-Angle-Constrained Using Adaptive Dynamic Programming 
260 |b Springer Nature B.V.  |c Mar 2025 
513 |a Journal Article 
520 3 |a To intercept a maneuvering target with a predetermined impact angle, a computational intelligence guidance law was proposed in this paper. Based on the theory of two-player zero-sum differential games, this problem is resolved efficiently by solving the Hamilton–Jacobi–Isaacs (HJI) equation. The Nash equilibrium solution of HJI equation can be solved with a policy iteration (PI) algorithm. Instead of using the offline PI algorithm, an online PI algorithm is introduced, in which the disturbance and control policies can be updated simultaneously. It can be proved that the online PI algorithm is a replacement for Newton’s iterative algorithm, the convergence of which is ensured by Kantorovich’s theorem. In the scenario of missiles intercepting targets, an adaptive critic structure based on a neural network (NN) is proposed to implement the online PI algorithm. Only one critic NN approximator is used in the PI algorithm to calculate a value function and the approximate Nash equilibrium solution. It is not necessary to acquire the exact internal dynamics information of nonlinear systems on the basis of online data sampling. The effectiveness of the computational intelligence guidance law is proven by simulation results. 
653 |a Iterative algorithms 
653 |a Dynamic programming 
653 |a Zero sum games 
653 |a Game theory 
653 |a Neural networks 
653 |a Missile structures 
653 |a Adaptive sampling 
653 |a Maneuvering targets 
653 |a Data sampling 
653 |a Guidance (motion) 
653 |a Intelligence 
653 |a System effectiveness 
653 |a Missiles 
653 |a Algorithms 
653 |a Nonlinear systems 
653 |a Differential games 
653 |a Nonlinear dynamics 
653 |a Interception 
653 |a Adaptive algorithms 
653 |a Control systems 
653 |a Control theory 
653 |a Simulation 
773 0 |t Journal of Intelligent & Robotic Systems  |g vol. 111, no. 1 (Mar 2025), p. 21 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159574470/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159574470/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch