Predicting vasovagal reactions to needles from video data using 2D-CNN with GRU and LSTM

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS One vol. 20, no. 1 (Jan 2025), p. e0314038
1. Verfasser: Rudokaite, Judita
Weitere Verfasser: Ong, Sharon, Itir Onal Ertugrul, Janssen, Mart P, Elisabeth Huis in ‘t Veld
Veröffentlicht:
Public Library of Science
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3159629530
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0314038  |2 doi 
035 |a 3159629530 
045 2 |b d20250101  |b d20250131 
084 |a 174835  |2 nlm 
100 1 |a Rudokaite, Judita 
245 1 |a Predicting vasovagal reactions to needles from video data using 2D-CNN with GRU and LSTM 
260 |b Public Library of Science  |c Jan 2025 
513 |a Journal Article 
520 3 |a When undergoing or about to undergo a needle-related procedure, most people are not aware of the adverse emotional and physical reactions (so-called vasovagal reactions; VVR), that might occur. Thus, rather than relying on self-report measurements, we investigate whether we can predict VVR levels from the video sequence containing facial information measured during the blood donation. We filmed 287 blood donors throughout the blood donation procedure where we obtained 1945 videos for data analysis. We compared 5 different sequences of videos—45, 30, 20, 10 and 5 seconds to test the shortest video duration required to predict VVR levels. We used 2D-CNN with LSTM and GRU to predict continuous VVR scores and to classify discrete (low and high) VVR values obtained during the blood donation. The results showed that during the classification task, the highest achieved F1 score on high VVR class was 0.74 with a precision of 0.93, recall of 0.61, PR-AUC of 0.86 and an MCC score of 0.61 using a pre-trained ResNet152 model with LSTM on 25 frames and during the regression task the lowest root mean square error achieved was 2.56 using GRU on 50 frames. This study demonstrates that it is possible to predict vasovagal responses during a blood donation using facial features, which supports the further development of interventions to prevent VVR. 
653 |a Physiology 
653 |a Blood 
653 |a Data analysis 
653 |a Anxiety 
653 |a Deep learning 
653 |a Regression models 
653 |a Intervention 
653 |a Biofeedback 
653 |a Blood donors 
653 |a Blood levels 
653 |a Blood & organ donations 
653 |a Heat detection 
653 |a Thermography 
653 |a Patients 
653 |a Frames (data processing) 
653 |a Stress 
653 |a Blood pressure 
653 |a Prevention 
653 |a Video data 
653 |a Hyperventilation 
653 |a Consciousness 
653 |a Benzodiazepines 
653 |a Fainting 
653 |a Heart rate 
653 |a Health risks 
653 |a Social 
700 1 |a Ong, Sharon 
700 1 |a Itir Onal Ertugrul 
700 1 |a Janssen, Mart P 
700 1 |a Elisabeth Huis in ‘t Veld 
773 0 |t PLoS One  |g vol. 20, no. 1 (Jan 2025), p. e0314038 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159629530/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3159629530/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159629530/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch