A Review on the Application of Superalloys Composition, Microstructure, Processing, and Performance via Machine Learning

Shranjeno v:
Bibliografske podrobnosti
izdano v:JOM vol. 77, no. 1 (Jan 2025), p. 106
Glavni avtor: Zhang, Junhui
Drugi avtorji: Gao, Haiyan, Liu, Yahui, Wang, Jun
Izdano:
Springer Nature B.V.
Teme:
Online dostop:Citation/Abstract
Full Text
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3159699024
003 UK-CbPIL
022 |a 1047-4838 
022 |a 0022-2674 
022 |a 0148-6608 
022 |a 0098-4558 
024 7 |a 10.1007/sll837-024-06922-7  |2 doi 
035 |a 3159699024 
045 2 |b d20250101  |b d20250131 
084 |a 28829  |2 nlm 
100 1 |a Zhang, Junhui  |u Shanghai Key Lab of Advanced High-temperature Materials and Precision Forming and State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai 200240, China 
245 1 |a A Review on the Application of Superalloys Composition, Microstructure, Processing, and Performance via Machine Learning 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a The advent of revolutionary advances in artificial intelligence (AI) has sparked significant interest among researchers across a spectrum of disciplines. Machine learning (ML) has become a potent tool for advancing materials research, offering solutions beyond traditional methods. This study discusses traditional machine learning (TML) and deep learning (DL) algorithms, providing a concise overview of commonly used ML algorithms in materials research. It also examines the general workflow of ML applications in superalloys, focusing on key aspects such as data preparation, feature engineering, model selection, and optimization, offering insights into the ML modeling process. From the perspective of the materials tetrahedron, this review explores ML applications in the research and development of superalloy composition, microstructure, processing, and performance. It highlights the use of advanced ML models to predict material properties, optimize alloy compositions and microstructure, and enhance manufacturing processes. It covers the use of advanced ML models and discusses the prospects of ML in superalloy research, highlighting its transformative potential in alloy material science. 
653 |a Materials research 
653 |a Material properties 
653 |a Optimization 
653 |a Workflow 
653 |a Data processing 
653 |a Tetrahedra 
653 |a Research & development--R&D 
653 |a Manufacturing 
653 |a Machine learning 
653 |a Microstructure 
653 |a Performance evaluation 
653 |a Superalloys 
653 |a Cognition & reasoning 
653 |a Materials science 
653 |a Artificial intelligence 
653 |a Oxidation 
653 |a Corrosion resistance 
653 |a Temperature 
653 |a Algorithms 
653 |a Engineering 
653 |a Deep learning 
653 |a Alloys 
653 |a Gas turbine engines 
653 |a Composition 
653 |a Process engineering 
700 1 |a Gao, Haiyan  |u Shanghai Key Lab of Advanced High-temperature Materials and Precision Forming and State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai 200240, China 
700 1 |a Liu, Yahui  |u Shanghai Key Lab of Advanced High-temperature Materials and Precision Forming and State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai 200240, China 
700 1 |a Wang, Jun  |u Shanghai Key Lab of Advanced High-temperature Materials and Precision Forming and State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai 200240, China 
773 0 |t JOM  |g vol. 77, no. 1 (Jan 2025), p. 106 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159699024/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3159699024/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159699024/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch