The geometry of the neural state space of decisions

Guardado en:
Detalles Bibliográficos
Publicado en:bioRxiv (Jan 25, 2025)
Autor principal: Monsalve-Mercado, Mauro M
Otros Autores: Miller, Kenneth D
Publicado:
Cold Spring Harbor Laboratory Press
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3159711554
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2025.01.24.634806  |2 doi 
035 |a 3159711554 
045 0 |b d20250125 
100 1 |a Monsalve-Mercado, Mauro M 
245 1 |a The geometry of the neural state space of decisions 
260 |b Cold Spring Harbor Laboratory Press  |c Jan 25, 2025 
513 |a Working Paper 
520 3 |a How do populations of neurons collectively encode and process information during cognitive tasks? We analyze high-yield population recordings from the macaque lateral intraparietal area (LIP) during a reaction-time random-dot-motion direction-discrimination task. We find that the trajectories of neural population activity patterns during single decisions lie within a two-dimensional decision manifold. Reaction time systematically varies along one dimension of the manifold, i.e. slow and fast decisions trace distinct activity patterns. Trajectories transition from a deliberation stage, in which they are noisy and remain similar between the choices, to a commitment stage, in which they are far less noisy and diverge sharply for the different choices. The deliberation phase is pronounced for slower decisions and gradually diminishes as reaction time decreases. A mechanistic circuit model provides an explanation for the observed properties, and suggests the transition between stages represents a transition from more sensory-driven to more circuit-driven dynamics. It yields two striking predictions we verify in the data. First, whether neurons are more choice selective for slow or fast trials varies systematically with the retinotopic location of their response fields. Second, the slower the trial, the more saccades undershoot the choice target. The results highlight the flexible and adaptive recruitment of neurons and the role of intrinsic circuit dynamics in the population implementation of a cognitive task.Competing Interest StatementThe authors have declared no competing interest. 
653 |a Mental task performance 
653 |a Retina 
653 |a Neurons 
653 |a Information processing 
653 |a Reaction time task 
653 |a Decision making 
653 |a Activity patterns 
700 1 |a Miller, Kenneth D 
773 0 |t bioRxiv  |g (Jan 25, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159711554/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2025.01.24.634806v1