Synaptome architecture shapes regional dynamics in the mouse brain

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:bioRxiv (Jan 25, 2025)
Үндсэн зохиолч: Hansen, Justine Y
Бусад зохиолчид: Luppi, Andrea I, Qiu, Zhen, Gini, Silvia, Fulcher, Ben D, Gozzi, Alessandro, Grant, Seth Gn, Misic, Bratislav
Хэвлэсэн:
Cold Spring Harbor Laboratory Press
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text - PDF
Full text outside of ProQuest
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3159711641
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2025.01.24.634803  |2 doi 
035 |a 3159711641 
045 0 |b d20250125 
100 1 |a Hansen, Justine Y 
245 1 |a Synaptome architecture shapes regional dynamics in the mouse brain 
260 |b Cold Spring Harbor Laboratory Press  |c Jan 25, 2025 
513 |a Working Paper 
520 3 |a Synapses are the connections that transform neurons from simple electrically charged cells into complex circuits that support perception, cognition and action. Recent advances in single-punctum synapse mapping in mice have made it possible to study the diversity of synapses and how these synapse types are differentially expressed across the brain. A salient question is how synapse diversity shapes the spatial patterning of whole-brain dynamics. Here we derive >6,000 time-series features from fMRI recordings in awake mice to construct a comprehensive macroscale dynamical phenotype of each synapse type. We find that spatial variation in synapse types colocalizes with spatial variation in regional dynamics. Time-series in regions enriched for SAP102-expressing synapses display high-amplitude events while time-series in regions enriched for PSD95-expressing synapses display low stationarity. These regional variations in synapse types and dynamics are associated with patterns of structural and functional connectivity and the placement of hubs. Finally, using two additional fMRI datasets in anaesthetized mice, we show that synapses expressing short- and long-lifetime proteins are differentially engaged across behavioural states. Collectively, this work demonstrates that the spatial organization of microscale synapse types fundamentally shapes whole-brain dynamics.Competing Interest StatementThe authors have declared no competing interest.Footnotes* https://github.com/netneurolab/hansen_synaptome 
653 |a Brain architecture 
653 |a Cognition 
653 |a Spatial variations 
653 |a Functional magnetic resonance imaging 
653 |a Phenotypic variations 
653 |a Postsynaptic density proteins 
653 |a Structure-function relationships 
653 |a Pattern formation 
653 |a Synapses 
653 |a Time series 
653 |a Neural networks 
653 |a Phenotypes 
653 |a Brain mapping 
700 1 |a Luppi, Andrea I 
700 1 |a Qiu, Zhen 
700 1 |a Gini, Silvia 
700 1 |a Fulcher, Ben D 
700 1 |a Gozzi, Alessandro 
700 1 |a Grant, Seth Gn 
700 1 |a Misic, Bratislav 
773 0 |t bioRxiv  |g (Jan 25, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159711641/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159711641/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2025.01.24.634803v1