Comprehensive exploration of diffusion models in image generation: a survey

Sparad:
Bibliografiska uppgifter
I publikationen:The Artificial Intelligence Review vol. 58, no. 4 (Apr 2025), p. 99
Utgiven:
Springer Nature B.V.
Ämnen:
Länkar:Citation/Abstract
Full Text - PDF
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 3159728271
003 UK-CbPIL
022 |a 0269-2821 
022 |a 1573-7462 
024 7 |a 10.1007/s10462-025-11110-3  |2 doi 
035 |a 3159728271 
045 2 |b d20250401  |b d20250430 
084 |a 68693  |2 nlm 
245 1 |a Comprehensive exploration of diffusion models in image generation: a survey 
260 |b Springer Nature B.V.  |c Apr 2025 
513 |a Journal Article 
520 3 |a The rapid development of deep learning technology has led to the emergence of diffusion models as a promising generative model with diverse applications. These include image generation, audio and video synthesis, molecular design, and text generation. The distinctive generation mechanism and exceptional generation quality of diffusion models have made them a valuable tool in these diverse fields. However, with the extensive deployment of diffusion models in the domain of image generation, concerns pertaining to data privacy, data security, and artistic ethics have emerged with increasing prominence. Given the accelerated pace of development in the field of diffusion models, the majority of extant surveys are deficient in two respects: firstly, they fail to encompass the latest advances in diffusion-based image synthesis; and secondly, they seldom consider the potential social implications of diffusion models. In order to address these issues, this paper presents a comprehensive survey of the most recent applications of diffusion models in the field of image generation. Furthermore, it provides an in-depth analysis of the potential social impacts that may result from their use. Firstly, this paper presents a systematic survey of the background principles and theoretical foundations of diffusion models. Subsequently, this paper provides a detailed examination of the most recent applications of diffusion models across a range of image generation subfields, including style transfer, image completion, image editing, super-resolution, and beyond. Finally, we present a comprehensive examination of these social issues, addressing data privacy concerns, such as the potential for data leakage and the implementation of protective measures during model training. We also analyse the risk of malicious exploitation of the model and the defensive strategies employed to mitigate such risks. Additionally, we examine the implications of the authenticity and originality of generated images on artistic creativity and copyright protection. 
653 |a Data analysis 
653 |a Diffusion models 
653 |a Data integrity 
653 |a Image resolution 
653 |a Image quality 
653 |a Audio data 
653 |a Privacy 
653 |a Chemical synthesis 
653 |a Image processing 
653 |a Copy protection 
653 |a Ethics 
653 |a Exploitation 
653 |a Application 
653 |a Deep learning 
653 |a Polls & surveys 
653 |a Adoption of innovations 
653 |a Deployment 
653 |a Image generation 
653 |a Data 
653 |a Video recordings 
653 |a Social issues 
653 |a Editing 
773 0 |t The Artificial Intelligence Review  |g vol. 58, no. 4 (Apr 2025), p. 99 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159728271/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159728271/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch