Efficient Recovery of Linear Predicted Coefficients Based on Adaptive Steepest Descent Algorithm in Signal Compression for End-to-End Communications

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Electrical and Computer Engineering vol. 2025 (2025)
Autor principal: Abel Kamagara
Otros Autores: Kagudde, Abbas, Atakan, Baris
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3159889454
003 UK-CbPIL
022 |a 2090-0147 
022 |a 2090-0155 
024 7 |a 10.1155/jece/6570183  |2 doi 
035 |a 3159889454 
045 2 |b d20250101  |b d20251231 
084 |a 131428  |2 nlm 
100 1 |a Abel Kamagara  |u Department of Electrical and Electronics Engineering Kyambogo University Kampala Uganda 
245 1 |a Efficient Recovery of Linear Predicted Coefficients Based on Adaptive Steepest Descent Algorithm in Signal Compression for End-to-End Communications 
260 |b John Wiley & Sons, Inc.  |c 2025 
513 |a Journal Article 
520 3 |a The efficiency of recovery and signal decoding efficacy at the receiver in end-to-end communications using linearly predicted coefficients are susceptible to errors, especially for highly compressed signals. In this paper, we propose a method to efficiently recover linearly predicted coefficients for high signal compression for end-to-end communications. Herein, the steepest descent algorithm is applied at the receiver to decode the affected linear predicted coefficients. This algorithm is used to estimate the unknown frequency, time, and phase. Subsequently, the algorithm facilitates down-conversion, time and carrier recovery, equalization, and correlation processes. To evaluate the feasibility of the proposed method, parameters such as multipath interference, additive white Gaussian noise, timing, and phase noise are modeled as channel errors in signal compression using the software-defined receiver. Our results show substantial recovery efficiency with noise variance between 0 and <inline-formula>y</inline-formula> × 10E − 3, where <inline-formula>y</inline-formula> lies between 0 and 10 using the modeled performance metrics of bit error rate, symbol error rate, and mean square error. This is promising for modeling software-defined networks using highly compressed signals in end-to-end communications. 
653 |a Mean square errors 
653 |a Software 
653 |a Accuracy 
653 |a Performance measurement 
653 |a Artificial intelligence 
653 |a Decoding 
653 |a Phase noise 
653 |a Signal processing 
653 |a Recovery 
653 |a Random noise 
653 |a Bit error rate 
653 |a Errors 
653 |a Algorithms 
653 |a Communications systems 
653 |a Speech 
653 |a Data compression 
653 |a Adaptive algorithms 
700 1 |a Kagudde, Abbas  |u Department of Electrical and Energy Engineering Soroti University Soroti Uganda 
700 1 |a Atakan, Baris  |u Department of Electrical and Electronics Engineering Izmir Institute of Technology Izmir Türkiye 
773 0 |t Journal of Electrical and Computer Engineering  |g vol. 2025 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159889454/abstract/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3159889454/fulltext/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159889454/fulltextPDF/embedded/CH9WPLCLQHQD1J4S?source=fedsrch