Binary plant rhizome growth-based optimization algorithm: an efficient high-dimensional feature selection approach

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Big Data vol. 12, no. 1 (Jan 2025), p. 13
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3159907902
003 UK-CbPIL
022 |a 2196-1115 
024 7 |a 10.1186/s40537-025-01066-0  |2 doi 
035 |a 3159907902 
045 2 |b d20250101  |b d20250131 
245 1 |a Binary plant rhizome growth-based optimization algorithm: an efficient high-dimensional feature selection approach 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a Feature selection is a pivotal research area within machine learning, tasked with pinpointing the essential subset of features from a broad array that critically influences a model’s predictive capabilities. This process enhances model precision and drastically lowers the computational demands associated with training and predicting. Consequently, more advanced optimization techniques are employed to address the challenge of feature selection. This paper introduces an innovative intelligent optimization algorithm, the Plant Root Growth Optimization (PRGO) algorithm, inspired by the structure of plant rhizomes and the way they absorb nutrients.In the algorithm, the plant rhizomes are divided into two categories, the taproot and the fibrous root.the growth process of the taproot plants is associated with the global exploration search, and the growth process of the fibrous root plants relates to the local exploitation search.The global asymptotic convergence of the algorithm is proved by applying Markov’s correlation theory, and simulation results using CEC2014 and CEC2017 test sets show that the proposed algorithm has excellent performance.Moreover, a binary variant of this algorithm (BPRGO) has been specifically crafted in this research to tackle the complexities of high-dimensional feature selection issues. The algorithm was compared to eight well-known feature selection methods and its performance was evaluated using a variety of evaluation metrics on 16 high-dimensional datasets from the Arizona State University feature selection library. and the performance of the proposed algorithm was evaluated through feature subset size, classification accuracy, fitness value, and F1-score. The experimental results show that BPRGO achieves the best performance, which has stronger feature reduction ability and achieves better overall performance on most datasets. BPRGO can obtain extremely smaller feature subsets while maintaining much higher classification accuracy, and satisfactory F1-score. 
653 |a Accuracy 
653 |a Datasets 
653 |a Performance evaluation 
653 |a Classification 
653 |a Nutrients 
653 |a Plant roots 
653 |a Optimization techniques 
653 |a Optimization 
653 |a Feature selection 
653 |a Algorithms 
653 |a Machine learning 
653 |a Optimization algorithms 
653 |a Big Data 
653 |a Exploitation 
653 |a Models 
653 |a Subsets 
653 |a Ability 
653 |a Simulation 
653 |a Convergence 
653 |a Intelligence 
653 |a Global local relationship 
653 |a Academic achievement 
773 0 |t Journal of Big Data  |g vol. 12, no. 1 (Jan 2025), p. 13 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159907902/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159907902/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch