ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool

Guardado en:
Detalles Bibliográficos
Publicado en:Geoscientific Model Development vol. 18, no. 2 (2025), p. 433
Autor principal: Dario Di Santo
Otros Autores: He, Cenlin, Chen, Fei, Giovannini, Lorenzo
Publicado:
Copernicus GmbH
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3159935944
003 UK-CbPIL
022 |a 1991-962X 
022 |a 1991-9603 
024 7 |a 10.5194/gmd-18-433-2025  |2 doi 
035 |a 3159935944 
045 2 |b d20250101  |b d20251231 
084 |a 123629  |2 nlm 
100 1 |a Dario Di Santo  |u Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy 
245 1 |a ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a The accurate calibration of parameters in atmospheric and Earth system models is crucial for improving their performance but remains a challenge due to their inherent complexity, which is reflected in input–output relationships often characterised by multiple interactions between the parameters, thus hindering the use of simple sensitivity analysis methods. This paper introduces the Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool (ML-AMPSIT), a new tool designed with the aim of providing a simple and flexible framework to estimate the sensitivity and importance of parameters in complex numerical weather prediction models. This tool leverages the strengths of multiple regression-based and probabilistic machine learning methods, including LASSO (see the list of abbreviations in Appendix B), support vector machine, classification and regression trees, random forest, extreme gradient boosting, Gaussian process regression, and Bayesian ridge regression. These regression algorithms are used to construct computationally inexpensive surrogate models to effectively predict the impact of input parameter variations on model output, thereby significantly reducing the computational burden of running high-fidelity models for sensitivity analysis. Moreover, the multi-method approach allows for a comparative analysis of the results. Through a detailed case study with the Weather Research and Forecasting (WRF) model coupled with the Noah-MP land surface model, ML-AMPSIT is demonstrated to efficiently predict the effects of varying the values of Noah-MP model parameters with a relatively small number of model runs by simulating a sea breeze circulation over an idealised flat domain. This paper points out how ML-AMPSIT can be an efficient tool for performing sensitivity and importance analysis for complex models, guiding the user through the different steps and allowing for a simplification and automatisation of the process. 
653 |a Weather forecasting 
653 |a Parameters 
653 |a Comparative analysis 
653 |a Sensitivity analysis 
653 |a Sea breezes 
653 |a Parameter sensitivity 
653 |a Regression analysis 
653 |a Regression models 
653 |a Weather 
653 |a Machine learning 
653 |a Automation 
653 |a Numerical weather forecasting 
653 |a Statistical analysis 
653 |a Prediction models 
653 |a Learning algorithms 
653 |a Breeze circulation 
653 |a Case studies 
653 |a Simulation 
653 |a Bayesian analysis 
653 |a Parameter estimation 
653 |a Support vector machines 
653 |a Abbreviations 
653 |a Air circulation 
653 |a Sea breeze circulation 
653 |a Impact analysis 
653 |a Gaussian process 
653 |a Algorithms 
653 |a Land surface models 
653 |a Methods 
653 |a Complexity 
653 |a Probability theory 
653 |a Mathematical models 
653 |a Process parameters 
653 |a Environmental 
700 1 |a He, Cenlin  |u NSF National Center for Atmospheric Research (NCAR), Boulder, CO, USA 
700 1 |a Chen, Fei  |u Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong SAR, China 
700 1 |a Giovannini, Lorenzo  |u Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy 
773 0 |t Geoscientific Model Development  |g vol. 18, no. 2 (2025), p. 433 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3159935944/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3159935944/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3159935944/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch