ASTRO: Automated Spatial Whole-Transcriptome RNA-Expression Workflow

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:bioRxiv (Feb 5, 2025)
Kaituhi matua: Zhang, Dingyao
Ētahi atu kaituhi: Chu, Zhiyuan, Huo, Yiran, Bai, Zhiliang, Fan, Rong, Lu, Jun, Gerstein, Mark
I whakaputaina:
Cold Spring Harbor Laboratory Press
Ngā marau:
Urunga tuihono:Citation/Abstract
Full text outside of ProQuest
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3160209342
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2025.01.24.634814  |2 doi 
035 |a 3160209342 
045 0 |b d20250205 
100 1 |a Zhang, Dingyao 
245 1 |a ASTRO: Automated Spatial Whole-Transcriptome RNA-Expression Workflow 
260 |b Cold Spring Harbor Laboratory Press  |c Feb 5, 2025 
513 |a Working Paper 
520 3 |a Motivation: Despite significant advances in spatial transcriptomics, the analysis of formalin-fixed paraffin-embedded (FFPE) tissues, which constitute most clinically available samples, remains challenging. Additionally, capturing both coding and noncoding RNAs in a spatial context poses significant challenges. We recently introduced Patho-DBiT, a technology designed to address these unmet needs. However, the marked differences between Patho-DBiT and existing spatial transcriptomics protocols necessitate specialized computational tools for comprehensive whole-transcriptome analysis in FFPE samples. Results: Here, we present ASTRO, an automated pipeline developed to process spatial transcriptomics data. In addition to supporting standard datasets, ASTRO is optimized for whole-transcriptome analyses of FFPE samples, enabling the detection of various RNA species, including non-coding RNAs such as miRNAs. To compensate for the reduced RNA quality in FFPE tissues, ASTRO incorporates a specialized filtering step and optimizes spatial barcode calling, increasing the mapping rate. These optimizations allow ASTRO to spatially quantify coding and non-coding RNA species in the entire transcriptome and achieve robust performance in FFPE samples. Availability: Codes are available at GitHub (https://github.com/gersteinlab/ASTRO).Competing Interest StatementThe authors have declared no competing interest.Footnotes* Manuscript resubmitted; Figure 1 quality improved; Figure 2 quality improved; Figure 3 quality improved. 
653 |a Transcriptomes 
653 |a Non-coding RNA 
653 |a Transcriptomics 
653 |a Automation 
700 1 |a Chu, Zhiyuan 
700 1 |a Huo, Yiran 
700 1 |a Bai, Zhiliang 
700 1 |a Fan, Rong 
700 1 |a Lu, Jun 
700 1 |a Gerstein, Mark 
773 0 |t bioRxiv  |g (Feb 5, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3160209342/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2025.01.24.634814v2