Microgravity Accelerates Skeletal Muscle Degeneration: Functional and Transcriptomic Insights from a Muscle Lab-on-Chip Model Onboard the ISS.

Guardat en:
Dades bibliogràfiques
Publicat a:bioRxiv (Jan 27, 2025)
Autor principal: Parafati, Maddalena
Altres autors: Zon Thwin, Malany, Legrand K, Coen, Paul M, Malany, Siobhan
Publicat:
Cold Spring Harbor Laboratory Press
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3160209483
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2025.01.26.634580  |2 doi 
035 |a 3160209483 
045 0 |b d20250127 
100 1 |a Parafati, Maddalena 
245 1 |a Microgravity Accelerates Skeletal Muscle Degeneration: Functional and Transcriptomic Insights from a Muscle Lab-on-Chip Model Onboard the ISS. 
260 |b Cold Spring Harbor Laboratory Press  |c Jan 27, 2025 
513 |a Working Paper 
520 3 |a Microgravity accelerates skeletal muscle degeneration, mimicking aging, yet its effects on human muscle cell function and signaling remain underexplored. Using a muscle lab-on-chip model onboard the International Space Station, we examined how microgravity and electrically stimulated contractions influence muscle biology and age-related muscle changes. Our 3D bioengineered muscle model, cultured for 21 days (12 days in microgravity), included myobundles from young, active and older, sedentary individuals, with and without electrically stimulated contraction. Real-time data collected within an autonomous Space Tango CubeLabTM showed reduced contraction magnitude in microgravity. Global transcriptomic analysis revealed increased gene expression and particularly mitochondrial-related gene expression in microgravity for the electrically stimulated younger myobundles, while the older myobundles were less responsive. Moreover, a comparative analysis using a skeletal muscle aging gene expression database revealed that certain age-induced genes showed changes in expression in myobundles from the younger cohort when exposed to microgravity, whereas these genes remained unchanged in myobundles from the older cohort. Younger, electrically stimulated myobundles in microgravity exhibited higher expression of 45 aging genes involved in key aging pathways related to inflammation and immune function, mitochondrial dysfunction, and cellular stress; and decreased expression of 41 aging genes associated with inflammation, and cell growth. This study highlights a unique age-related molecular signature in muscle cells exposed to microgravity and underscores electrical stimulation as a potential countermeasure. These insights advance understanding of skeletal muscle aging and microgravity-induced degeneration, informing strategies for mitigating age-related muscle atrophy in space and on Earth.Competing Interest StatementSiobhan Malany is founder of Micro-gRx and a member of the scientific board. Legrand Malany is author of a patent application for the microfluidic device. 
653 |a Gene expression 
653 |a Comparative analysis 
653 |a Microfluidics 
653 |a Patent applications 
653 |a Musculoskeletal system 
653 |a Skeletal muscle 
653 |a Aging 
653 |a Lab-on-a-chip 
653 |a Weightlessness 
653 |a Degeneration 
653 |a Microgravity 
653 |a Muscle contraction 
653 |a Atrophy 
653 |a Transcriptomics 
653 |a Cellular stress response 
653 |a Electrical stimuli 
653 |a Immune response 
653 |a Inflammation 
700 1 |a Zon Thwin 
700 1 |a Malany, Legrand K 
700 1 |a Coen, Paul M 
700 1 |a Malany, Siobhan 
773 0 |t bioRxiv  |g (Jan 27, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3160209483/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2025.01.26.634580v1