Estimation of stationary and non-stationary moving average processes in the correlation domain

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:PLoS One vol. 20, no. 1 (Jan 2025), p. e0314080
المؤلف الرئيسي: Dodek, Martin
مؤلفون آخرون: Miklovičová, Eva
منشور في:
Public Library of Science
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3160320977
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0314080  |2 doi 
035 |a 3160320977 
045 2 |b d20250101  |b d20250131 
084 |a 174835  |2 nlm 
100 1 |a Dodek, Martin 
245 1 |a Estimation of stationary and non-stationary moving average processes in the correlation domain 
260 |b Public Library of Science  |c Jan 2025 
513 |a Journal Article 
520 3 |a This paper introduces a novel approach for the offline estimation of stationary moving average processes, further extending it to efficient online estimation of non-stationary processes. The novelty lies in a unique technique to solve the autocorrelation function matching problem leveraging that the autocorrelation function of a colored noise is equal to the autocorrelation function of the coefficients of the moving average process. This enables the derivation of a system of nonlinear equations to be solved for estimating the model parameters. Unlike conventional methods, this approach uses the Newton-Raphson and Levenberg–Marquardt algorithms to efficiently find the solution. A key finding is the demonstration of multiple symmetrical solutions and the provision of necessary conditions for solution feasibility. In the non-stationary case, the estimation complexity is notably reduced, resulting in a triangular system of linear equations solvable by backward substitution. For online parameter estimation of non-stationary processes, a new recursive formula is introduced to update the sample autocorrelation function, integrating exponential forgetting of older samples to enable parameter adaptation. Numerical experiments confirm the method’s effectiveness and evaluate its performance compared to existing techniques. 
653 |a Autocorrelation function 
653 |a Autocorrelation functions 
653 |a Regression analysis 
653 |a Parameter estimation 
653 |a Numerical experiments 
653 |a Optimization 
653 |a Signal processing 
653 |a Recursive functions 
653 |a Convex analysis 
653 |a Linear equations 
653 |a Algorithms 
653 |a Methods 
653 |a Nonlinear equations 
653 |a Stationary processes 
653 |a Economic 
700 1 |a Miklovičová, Eva 
773 0 |t PLoS One  |g vol. 20, no. 1 (Jan 2025), p. e0314080 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3160320977/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3160320977/fulltext/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3160320977/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch