Improved Correction of Extreme Precipitation Through Explicit and Continuous Nonstationarity Treatment and the Metastatistical Approach

Guardado en:
Detalles Bibliográficos
Publicado en:Water Resources Research vol. 61, no. 1 (Jan 1, 2025)
Autor principal: Vidrio‐Sahagún, Cuauhtémoc Tonatiuh
Otros Autores: He, Jianxun, Pietroniro, Alain
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3160334686
003 UK-CbPIL
022 |a 0043-1397 
022 |a 1944-7973 
024 7 |a 10.1029/2024WR037721  |2 doi 
035 |a 3160334686 
045 0 |b d20250101 
084 |a 107315  |2 nlm 
100 1 |a Vidrio‐Sahagún, Cuauhtémoc Tonatiuh  |u Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada 
245 1 |a Improved Correction of Extreme Precipitation Through Explicit and Continuous Nonstationarity Treatment and the Metastatistical Approach 
260 |b John Wiley & Sons, Inc.  |c Jan 1, 2025 
513 |a Journal Article 
520 3 |a Climate models simulate extreme precipitation under nonstationarity due to continuous climate change. However, systematic errors in local‐scale climate projections are often corrected using stationary or quasi‐stationary methods without explicit and continuous nonstationarity treatment, like quantile mapping (QM), detrended QM, and quantile delta mapping. To bridge this gap, we introduce nonstationary QM (NS‐QM) and its simplified version for consistent nonstationarity patterns (CNS‐QM). Besides, correction approaches for extremes often rely on limited extreme‐event records. To leverage ordinary‐event information while focusing on extremes, we propose integrating the simplified Metastatistical extreme value (SMEV) distribution into NS‐QM and CNS‐QM (NS‐QM‐SMEV and CNS‐QM‐SMEV). We demonstrate the superiority of NS‐ and CNS‐QM‐SMEV over existing methods through a simulation study and show several real‐world applications using high‐resolution‐regional and coarse‐resolution‐global climate models. NS‐QM and CNS‐QM reflect nonstationarity more realistically but may encounter challenges due to data limitations like estimation errors and uncertainty, particularly for the most extreme events. These issues, shared by existing approaches, are effectively mitigated using the SMEV distribution. NS‐ and CNS‐QM‐SMEV offer lower estimation error, approximate unbiasedness, reduced uncertainty, and improved representation of the entire distribution, especially for samples of ∼70 years, and greater superiority with larger samples. We show existing methods may perform competitively for short samples but exhibit substantial biases in quantile‐quantile matching due to bypassing nonstationarity modeling. NS‐ and CNS‐QM‐SMEV avoid these biases, adhering better to their theoretical functioning. Thus, NS‐ and CNS‐QM‐SMEV enhance the correction of extremes under nonstationarity. Yet, properly identifying nonstationarity patterns is crucial for reliable implementations. 
653 |a Climate change 
653 |a Extreme weather 
653 |a Bias 
653 |a Precipitation 
653 |a Quantiles 
653 |a Mapping 
653 |a Extreme values 
653 |a Uncertainty 
653 |a Systematic errors 
653 |a Global climate 
653 |a Climate models 
653 |a Environmental impact 
653 |a Global climate models 
653 |a Estimation errors 
653 |a Climate prediction 
653 |a Environmental 
700 1 |a He, Jianxun  |u Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada 
700 1 |a Pietroniro, Alain  |u Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada 
773 0 |t Water Resources Research  |g vol. 61, no. 1 (Jan 1, 2025) 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3160334686/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3160334686/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3160334686/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch