MARC

LEADER 00000nab a2200000uu 4500
001 3160334920
003 UK-CbPIL
022 |a 0043-1397 
022 |a 1944-7973 
024 7 |a 10.1029/2024WR038073  |2 doi 
035 |a 3160334920 
045 0 |b d20250101 
084 |a 107315  |2 nlm 
100 1 |a Pettersson, Per  |u NORCE Norwegian Research Centre, Bergen, Norway 
245 1 |a Copula Modeling and Uncertainty Propagation in Field‐Scale Simulation of CO2 Fault Leakage 
260 |b John Wiley & Sons, Inc.  |c Jan 1, 2025 
513 |a Journal Article 
520 3 |a Subsurface storage of CO2 ${\mathrm{C}\mathrm{O}}_{2}$ is an important means to mitigate climate change, and the North Sea hosts considerable potential storage resources. To investigate the fate of CO2 ${\mathrm{C}\mathrm{O}}_{2}$ over decades in vast reservoirs, numerical simulation based on realistic models is essential. Faults and other complex geological structures introduce modeling challenges as their effects on storage operations are subject to high uncertainty. We present a computational framework for forward propagation of uncertainty, including stochastic upscaling and copula representation of multivariate distributions for a CO2 ${\mathrm{C}\mathrm{O}}_{2}$ storage site model with faults. The Vette fault zone in the Smeaheia formation in the North Sea is used as a test case. The stochastic upscaling method reduces the number of stochastic dimensions and the cost of evaluating the reservoir model. Copulas provide representation of dependent multidimensional random variables and a good fit to data, allow fast sampling and coupling to the forward propagation method via independent uniform random variables. The non‐stationary correlation within the upscaled flow functions are accurately captured by a data‐driven transformation model. The uncertainty in upscaled flow functions and other uncertain parameters are efficiently propagated to leakage estimates using numerical reservoir simulation of a two‐phase system of CO2 and brine. The expectations of leakage are estimated by an adaptive stratified sampling technique which effectively allocates samples in stochastic space. We demonstrate cost reduction compared to standard Monte Carlo of one or two orders of magnitude for simpler test cases, and factors 2–8 cost reduction for stochastic multi‐phase flow properties and more complex stochastic models. 
651 4 |a North Sea 
653 |a Global warming 
653 |a Mathematical analysis 
653 |a Fault zones 
653 |a Carbon dioxide 
653 |a Geological structures 
653 |a Adaptive sampling 
653 |a Stochastic models 
653 |a Greenhouse gases 
653 |a Statistical models 
653 |a Sampling 
653 |a Sampling techniques 
653 |a Parameter uncertainty 
653 |a Fault lines 
653 |a Climate change 
653 |a Dependent variables 
653 |a Climate change mitigation 
653 |a Computer simulation 
653 |a Greenhouse effect 
653 |a Propagation 
653 |a Simulation 
653 |a Numerical simulations 
653 |a Random variables 
653 |a Leakage 
653 |a Faults 
653 |a Brines 
653 |a Statistical methods 
653 |a Reservoirs 
653 |a Uncertainty 
653 |a Cost reduction 
653 |a Rock properties 
653 |a Stratified sampling 
653 |a Geology 
653 |a Rocks 
653 |a Independent variables 
653 |a Representations 
653 |a Modelling 
653 |a Parameter estimation 
653 |a Sampling methods 
653 |a Reservoir storage 
653 |a Numerical models 
653 |a Mathematical models 
653 |a Environmental 
700 1 |a Keilegavlen, Eirik  |u University of Bergen, Bergen, Norway 
700 1 |a Sandve, Tor Harald  |u NORCE Norwegian Research Centre, Bergen, Norway 
700 1 |a Gasda, Sarah E.  |u NORCE Norwegian Research Centre, Bergen, Norway 
700 1 |a Krumscheid, Sebastian  |u Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany 
773 0 |t Water Resources Research  |g vol. 61, no. 1 (Jan 1, 2025) 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3160334920/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3160334920/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3160334920/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch