MARC

LEADER 00000nab a2200000uu 4500
001 3160336957
003 UK-CbPIL
022 |a 0043-1397 
022 |a 1944-7973 
024 7 |a 10.1029/2024WR037706  |2 doi 
035 |a 3160336957 
045 0 |b d20250101 
084 |a 107315  |2 nlm 
100 1 |a Cunha Teixeira, José  |u CNRS, EPHE, UMR 7619 METIS, Sorbonne Université, Paris, France 
245 1 |a Physics‐Guided Deep Learning Model for Daily Groundwater Table Maps Estimation Using Passive Surface‐Wave Dispersion 
260 |b John Wiley & Sons, Inc.  |c Jan 1, 2025 
513 |a Journal Article 
520 3 |a Monitoring groundwater tables (GWTs) remains challenging due to limited spatial and temporal observations. This study introduces an innovative approach combining an artificial neural network, specifically a multilayer perceptron (MLP), with continuous passive Multichannel Analysis of Surface Waves (passive‐MASW) to construct GWT depth maps. The geologically well‐constrained study site includes two piezometers and a permanent 2D geophone array recording train‐induced surface waves. At each point of the array, dispersion curves (DCs), displaying Rayleigh‐wave phase velocities VR $\left({V}_{R}\right)$ over a frequency range of 5–50 Hz, were measured daily from December 2022 to September 2023, and latter resampled over wavelengths from 4 to 15 m, to focus on the expected GWT depths (1–5 m). Nine months of daily VR ${V}_{R}$ data near one piezometer, spanning both low and high water periods, were used to train the MLP model. GWT depths were then estimated across the geophone array, producing daily GWT maps. The model's performance was evaluated by comparing inferred GWT depths with observed measurements at the second piezometer. Results show a coefficient of determination (R2) of 80% at the training piezometer and of 68% at the test piezometer, and a remarkably low root‐mean‐square error (RMSE) of 0.03 m at both locations. These findings highlight the potential of deep learning to estimate GWT maps from seismic data with spatially limited piezometric information, offering a practical and efficient solution for monitoring groundwater dynamics across large spatial extents. 
653 |a Seismic waves 
653 |a Observational learning 
653 |a Resource management 
653 |a Multilayer perceptrons 
653 |a Artificial neural networks 
653 |a Neural networks 
653 |a Dispersion 
653 |a Hazard assessment 
653 |a Wave dispersion 
653 |a Groundwater 
653 |a Water monitoring 
653 |a Environmental management 
653 |a Water resources management 
653 |a Groundwater table 
653 |a Ambient noise 
653 |a Seismic velocities 
653 |a Wave data 
653 |a Training 
653 |a Root-mean-square errors 
653 |a Seismological data 
653 |a Wave phase 
653 |a Piezometers 
653 |a Water table 
653 |a Wavelengths 
653 |a Dispersion curve analysis 
653 |a Water resources 
653 |a Seismic activity 
653 |a P-waves 
653 |a Deep learning 
653 |a Maps 
653 |a Two dimensional analysis 
653 |a Frequency ranges 
653 |a Wave velocity 
653 |a Surface waves 
653 |a Physics 
653 |a Noise monitoring 
653 |a Depth 
653 |a Groundwater levels 
653 |a Environmental hazards 
653 |a Sensor arrays 
653 |a Estimation errors 
653 |a Seismic data 
653 |a Spatial discrimination learning 
653 |a Estimation 
653 |a Environmental 
700 1 |a Bodet, Ludovic  |u CNRS, EPHE, UMR 7619 METIS, Sorbonne Université, Paris, France 
700 1 |a Rivière, Agnès  |u Geosciences Department, Mines Paris—PSL, PSL University, Paris, France 
700 1 |a Hallier, Amélie  |u SNCF Réseau, Saint‐Denis, France 
700 1 |a Gesret, Alexandrine  |u Geosciences Department, Mines Paris—PSL, PSL University, Paris, France 
700 1 |a Dangeard, Marine  |u SNCF Réseau, Saint‐Denis, France 
700 1 |a Dhemaied, Amine  |u SNCF Réseau, Saint‐Denis, France 
700 1 |a Boisson Gaboriau, Joséphine  |u SNCF Réseau, Saint‐Denis, France 
773 0 |t Water Resources Research  |g vol. 61, no. 1 (Jan 1, 2025) 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3160336957/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3160336957/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3160336957/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch