Machine Learning applied to MALDI-TOF data in a clinical setting: a systematic review

Uloženo v:
Podrobná bibliografie
Vydáno v:bioRxiv (Mar 3, 2025)
Hlavní autor: Schmidt-Santiago, Lucia
Další autoři: Guerrero-Lopez, Alejandro, Sevilla-Salcedo, Carlos, Rodriguez-Temporal, David, Rodriguez-Sanchez, Belen, Gomez-Verdejo, Vanessa
Vydáno:
Cold Spring Harbor Laboratory Press
Témata:
On-line přístup:Citation/Abstract
Full text outside of ProQuest
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3160657507
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2025.01.25.634879  |2 doi 
035 |a 3160657507 
045 0 |b d20250303 
100 1 |a Schmidt-Santiago, Lucia 
245 1 |a Machine Learning applied to MALDI-TOF data in a clinical setting: a systematic review 
260 |b Cold Spring Harbor Laboratory Press  |c Mar 3, 2025 
513 |a Working Paper 
520 3 |a Bacterial identification, antimicrobial resistance prediction, and strain typification are critical tasks in clinical microbiology, essential for guiding patient treatment and controlling the spread of infectious diseases. While Machine Learning (ML) has shown immense promise in enhancing MALDI-TOF mass spectrometry applications for these tasks, an up to date comprehensive review from a ML perspective is currently lacking. To address this gap, we systematically reviewed 93 studies published between 2004 and 2024, focusing on key ML aspects such as data size and balance, pre-processing pipelines, model selection and evaluation, open-source data and code availability. Our analysis highlights the predominant use of classical ML models like Random Forest and Support Vector Machines, alongside emerging interest in Deep Learning approaches for handling complex, high-dimensional data. Despite significant progress, challenges such as inconsistent preprocessing workflows, reliance on black-box models, limited external validation, and insufficient open-source resources persist, hindering transparency, reproducibility, and broader adoption. This review offers actionable insights to enhance ML-driven bacteria diagnostics, advocating for standardized methodologies, greater transparency, and improved data accessibility. In addition, we provide guidelines on how to approach ML for MALDI-TOF analysis, helping researchers navigate key decisions in model development and evaluation.Competing Interest StatementThe authors have declared no competing interest.Footnotes* Final version submitted to journal. Text, figures and tables are updated and have been revised. 
653 |a Antimicrobial resistance 
653 |a Machine learning 
653 |a Mass spectrometry 
653 |a Types 
653 |a Mass spectroscopy 
653 |a Scientific imaging 
653 |a Clinical microbiology 
653 |a Deep learning 
653 |a Classification 
653 |a Infectious diseases 
653 |a Learning algorithms 
700 1 |a Guerrero-Lopez, Alejandro 
700 1 |a Sevilla-Salcedo, Carlos 
700 1 |a Rodriguez-Temporal, David 
700 1 |a Rodriguez-Sanchez, Belen 
700 1 |a Gomez-Verdejo, Vanessa 
773 0 |t bioRxiv  |g (Mar 3, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3160657507/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2025.01.25.634879v2