Coherence‐Based Characterization of a Long‐Period Monochromatic Seismic Signal

Guardado en:
Detalles Bibliográficos
Publicado en:Geophysical Research Letters vol. 52, no. 2 (Jan 28, 2025)
Autor principal: Takano, Tomoya
Otros Autores: Poli, Piero
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3160678331
003 UK-CbPIL
022 |a 0094-8276 
022 |a 1944-8007 
024 7 |a 10.1029/2024GL113290  |2 doi 
035 |a 3160678331 
045 0 |b d20250128 
084 |a 107510  |2 nlm 
100 1 |a Takano, Tomoya  |u National Research Institute for Earth Science and Disaster Resilience, Ibaraki, Japan 
245 1 |a Coherence‐Based Characterization of a Long‐Period Monochromatic Seismic Signal 
260 |b John Wiley & Sons, Inc.  |c Jan 28, 2025 
513 |a Journal Article 
520 3 |a Continuous seismic data analysis identifies signals related to physical processes within the Earth or on its surface. Characterizing seismic signals yields insights into source processes and Earth's structural features. Global seismic network analysis of long‐period (25–100 s) surface waves has detected seismic events not identified through high‐frequency body wave analysis. However, detecting long‐lasting monochromatic signals with narrow spectral peaks, which carry valuable information about geological and environmental processes, remains challenging on a global scale. We developed a coherence‐based approach to characterize long‐period monochromatic signals on a global scale. In addition to signals originating from the Gulf of Guinea, Vanuatu islands, and a submarine volcano, we observed a previously unidentified signal originating from the Canadian Arctic, likely associated with glacier dynamics. Our approach explores long‐period monochromatic seismic signals in continuous seismic data, providing a foundation for future studies to characterize the physical processes generating these signals on Earth's surface. 
651 4 |a Vanuatu 
651 4 |a Arctic region 
651 4 |a Gulf of Guinea 
653 |a Earthquakes 
653 |a Glaciers 
653 |a Arctic glaciers 
653 |a Submarine volcanoes 
653 |a Structural analysis 
653 |a Wave analysis 
653 |a Islands 
653 |a Data analysis 
653 |a Velocity 
653 |a Glacial periods 
653 |a Signal processing 
653 |a Landslides & mudslides 
653 |a Volcanoes 
653 |a Earth surface 
653 |a Seismological data 
653 |a Regions 
653 |a Information processing 
653 |a Coherence 
653 |a Seismic activity 
653 |a Glacial dynamics 
653 |a Surface waves 
653 |a Network analysis 
653 |a Machine learning 
653 |a Volcanic activity 
653 |a Earth 
653 |a Seismic data 
653 |a Glacier movement 
653 |a Environmental 
700 1 |a Poli, Piero  |u Dipartimento di Geoscienze, Università di Padova, Padova, Italy 
773 0 |t Geophysical Research Letters  |g vol. 52, no. 2 (Jan 28, 2025) 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3160678331/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3160678331/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3160678331/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch