An ensemble of optimal smoothing and minima controlled through iterative averaging for speech enhancement under uncontrolled environment

Guardado en:
Detalles Bibliográficos
Publicado en:Multimedia Tools and Applications vol. 84, no. 4 (Jan 2025), p. 1861
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3160686068
003 UK-CbPIL
022 |a 1380-7501 
022 |a 1573-7721 
024 7 |a 10.1007/s11042-024-19174-z  |2 doi 
035 |a 3160686068 
045 2 |b d20250101  |b d20250131 
084 |a 108528  |2 nlm 
245 1 |a An ensemble of optimal smoothing and minima controlled through iterative averaging for speech enhancement under uncontrolled environment 
260 |b Springer Nature B.V.  |c Jan 2025 
513 |a Journal Article 
520 3 |a Although better progress has been made in the area of speech enhancement, a significant performance degradation still exists under highly non-stationary noisy conditions. These conditions have a detrimental impact on the performance of the speech processing applications such as automatic speech recognition, speech encoding, speaker verification, speaker identification, and speaker recognition. Therefore, in this work, a robust noise estimation technique is proposed for speech enhancement under highly non-stationary noisy scenarios. The proposed work introduces an optimal smoothing and minima controlled (OSMC) through an iterative averaging method for noise estimation. Firstly, the computation of smooth power spectrum of degraded speech data and tracking the minima by continuously taking the past spectral average values are considered. Then, to find the activity of speech in each frequency bin, the ratio of degraded speech spectrum to its local minimum is considered, and a Bayes minimum-cost rule is applied for the decision-making. Finally, the spectrum of noise is estimated using the time-frequency dependent smoothing factors which mainly depend on the estimation of the probability of speech presence. The experiments are conducted on NOIZEUS and Kannada speech databases. The evaluated results demonstrated that the proposed OSMC technique exhibits better speech quality and intelligibility performance compared to existing algorithms under highly non-stationary noisy conditions. 
653 |a Speech enhancement 
653 |a Smoothing 
653 |a Robust control 
653 |a Kannada language 
653 |a Grammatical aspect 
653 |a Performance evaluation 
653 |a Noise 
653 |a Intelligibility 
653 |a Voice recognition 
653 |a Speaker identification 
653 |a Data smoothing 
653 |a Speech processing 
653 |a Speech recognition 
653 |a Algorithms 
653 |a Performance degradation 
653 |a Automatic speech recognition 
653 |a Speech 
653 |a Minima 
653 |a Databases 
653 |a Experiments 
653 |a Degradation 
653 |a Acknowledgment 
653 |a Rules 
653 |a Decision making 
653 |a Speeches 
653 |a Encoding 
653 |a Verification 
653 |a Computation 
653 |a Estimation 
653 |a Tracking 
773 0 |t Multimedia Tools and Applications  |g vol. 84, no. 4 (Jan 2025), p. 1861 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3160686068/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3160686068/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch