A review of cutting tool life prediction through flank wear monitoring

Guardado en:
Bibliografiske detaljer
Udgivet i:The International Journal of Quality & Reliability Management vol. 42, no. 2 (2025), p. 425-473
Hovedforfatter: Das, Monojit
Andre forfattere: Naikan, VNA, Panja, Subhash Chandra
Udgivet:
Emerald Group Publishing Limited
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3161415463
003 UK-CbPIL
022 |a 0265-671X 
022 |a 1758-6682 
024 7 |a 10.1108/IJQRM-11-2022-0318  |2 doi 
035 |a 3161415463 
045 2 |b d20250101  |b d20251231 
084 |a 14215  |2 nlm 
100 1 |a Das, Monojit  |u Subir Chowdhury School of Quality and Reliability, Indian Institute of Technology Kharagpur, Kharagpur, India 
245 1 |a A review of cutting tool life prediction through flank wear monitoring 
260 |b Emerald Group Publishing Limited  |c 2025 
513 |a Journal Article 
520 3 |a PurposeThe aim of this paper is to review the literature on the prediction of cutting tool life. Tool life is typically estimated by predicting the time to reach the threshold flank wear width. The cutting tool is a crucial component in any machining process, and its failure affects the manufacturing process adversely. The prediction of cutting tool life by considering several factors that affect tool life is crucial to managing quality, cost, availability and waste in machining processes.Design/methodology/approachThis study has undertaken the critical analysis and summarisation of various techniques used in the literature for predicting the life or remaining useful life (RUL) of the cutting tool through monitoring the tool wear, primarily flank wear. The experimental setups that comprise diversified machining processes, including turning, milling, drilling, boring and slotting, are covered in this review.FindingsCutting tool life is a stochastic variable. Tool failure depends on various factors, including the type and material of the cutting tool, work material, cutting conditions and machine tool. Thus, the life of the cutting tool for a particular experimental setup must be modelled by considering the cutting parameters.Originality/valueThis submission discusses tool life prediction comprehensively, from monitoring tool wear, primarily flank wear, to modelling tool life, and this type of comprehensive review on cutting tool life prediction has not been reported in the literature till now. The future suggestions provided in this review are expected to provide avenues to solve the unexplored challenges in this field. 
653 |a Cutting tools 
653 |a Drilling machines (tools) 
653 |a Failure 
653 |a Tool life 
653 |a Milling (machining) 
653 |a Turning (machining) 
653 |a Machine tools 
653 |a Cutting parameters 
653 |a Life prediction 
653 |a Monitoring 
653 |a Boring tools 
653 |a Boring mills 
653 |a Cutting wear 
653 |a Tool wear 
653 |a Useful life 
653 |a Cutting tool materials 
700 1 |a Naikan, VNA  |u Subir Chowdhury School of Quality and Reliability, Indian Institute of Technology Kharagpur, Kharagpur, India 
700 1 |a Panja, Subhash Chandra  |u Department of Mechanical Engineering, Jadavpur University, Kolkata, India 
773 0 |t The International Journal of Quality & Reliability Management  |g vol. 42, no. 2 (2025), p. 425-473 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3161415463/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3161415463/fulltext/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3161415463/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch