Mapping damages from inspection images to 3D digital twins of large‐scale structures

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:Engineering Reports vol. 7, no. 1 (Jan 1, 2025)
मुख्य लेखक: von Benzon, Hans‐Henrik
अन्य लेखक: Chen, Xiao
प्रकाशित:
John Wiley & Sons, Inc.
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full Text
Full Text - PDF
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 3161574840
003 UK-CbPIL
022 |a 2577-8196 
024 7 |a 10.1002/eng2.12837  |2 doi 
035 |a 3161574840 
045 0 |b d20250101 
100 1 |a von Benzon, Hans‐Henrik  |u Department of Wind and Energy Systems, Technical University of Denmark, Roskilde, Denmark 
245 1 |a Mapping damages from inspection images to 3D digital twins of large‐scale structures 
260 |b John Wiley & Sons, Inc.  |c Jan 1, 2025 
513 |a Journal Article 
520 3 |a This study develops a methodology to create detailed visual Digital Twins of large‐scale structures with their realistic damages detected from visual inspection or nondestructive testing. The methodology is demonstrated with a transition piece of an offshore wind turbine and a composite rotor blade, with surface paint damage and subsurface delamination damage, respectively. Artificial Intelligence and color threshold segmentation are used to classify and localize damages from optical images taken by drones. These damages are digitalized and mapped to a 3D geometry reconstruction of the large‐scale structure or a CAD model of the structure. To map the images from 2D to 3D, metadata information is combined with the geo placement of the large‐scale structure's 3D model. The 3D model can here both be a CAD model of the structure or a 3D reconstruction based on photogrammetry. After mapping the damage, the Digital Twin gives an accurate representation of the structure. The location, shape, and size of the damage are visible on the Digital Twin. The demonstrated methodology can be applied to industrial sectors such as wind energy, the oil and gas industry, marine and aerospace to facilitate asset management. 
653 |a Digital mapping 
653 |a Digital imaging 
653 |a Deep learning 
653 |a Nondestructive testing 
653 |a Wind farms 
653 |a Rotor blades 
653 |a Offshore structures 
653 |a Damage detection 
653 |a Cracks 
653 |a Energy consumption 
653 |a Three dimensional composites 
653 |a Wind damage 
653 |a Internet of Things 
653 |a Photogrammetry 
653 |a Rotor blades (turbomachinery) 
653 |a Turbines 
653 |a Methodology 
653 |a Inspection 
653 |a Image reconstruction 
653 |a Wind power 
653 |a Image segmentation 
653 |a Digital twins 
653 |a Neural networks 
653 |a Sensors 
653 |a Three dimensional models 
653 |a Wind turbines 
653 |a Drones 
653 |a Computer aided design--CAD 
653 |a Algorithms 
653 |a Artificial intelligence 
653 |a Asset management 
653 |a Industry 4.0 
700 1 |a Chen, Xiao  |u Department of Wind and Energy Systems, Technical University of Denmark, Roskilde, Denmark 
773 0 |t Engineering Reports  |g vol. 7, no. 1 (Jan 1, 2025) 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3161574840/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3161574840/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3161574840/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch