The combinatorics of \(N_\infty\) operads for \(C_{qp^n}\) and \(D_{p^n}\)

Guardado en:
Detalles Bibliográficos
Publicado en:Glasgow Mathematical Journal vol. 67, no. 1 (Jan 2025), p. 50
Autor principal: Balchin, Scott
Otros Autores: MacBrough, Ethan, Ormsby, Kyle
Publicado:
Cambridge University Press
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:We provide a general recursive method for constructing transfer systems on finite lattices. Using this, we calculate the number of homotopically distinct <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0017089524000211_inline4.png" />\(N_{\infty} \)</inline-formula> operads for dihedral groups <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0017089524000211_inline5.png" />\(D_{p^n}\)</inline-formula>, <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0017089524000211_inline6.png" />\(p \gt 2\)</inline-formula> prime, and cyclic groups <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0017089524000211_inline7.png" />\(C_{qp^n}\)</inline-formula>, <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0017089524000211_inline8.png" />\(p \neq q\)</inline-formula> prime. We then further display some of the beautiful combinatorics obtained by restricting to certain homotopically meaningful <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0017089524000211_inline9.png" />\(N_\infty\)</inline-formula> operads for these groups.
ISSN:0017-0895
1469-509X
DOI:10.1017/S0017089524000211
Fuente:Science Database