MARC

LEADER 00000nab a2200000uu 4500
001 3162627418
003 UK-CbPIL
022 |a 0737-8831 
022 |a 2054-166X 
024 7 |a 10.1108/LHT-10-2022-0488  |2 doi 
035 |a 3162627418 
045 2 |b d20250101  |b d20250228 
084 |a 45886  |2 nlm 
100 1 |a Hosseini, Elaheh  |u Department of Information Science and Knowledge Studies, Alzahra University, Tehran, Iran 
245 1 |a Development and maturity of co-word thematic clusters: the field of linked data 
260 |b Emerald Group Publishing Limited  |c 2025 
513 |a Journal Article 
520 3 |a PurposeThis research aimed to visualize and analyze the co-word network and thematic clusters of the intellectual structure in the field of linked data during 1900–2021.Design/methodology/approachThis applied research employed a descriptive and analytical method, scientometric indicators, co-word techniques, and social network analysis. VOSviewer, SPSS, Python programming, and UCINet software were used for data analysis and network structure visualization.FindingsThe top ranks of the Web of Science (WOS) subject categorization belonged to various fields of computer science. Besides, the USA was the most prolific country. The keyword ontology had the highest frequency of co-occurrence. Ontology and semantic were the most frequent co-word pairs. In terms of the network structure, nine major topic clusters were identified based on co-occurrence, and 29 thematic clusters were identified based on hierarchical clustering. Comparisons between the two clustering techniques indicated that three clusters, namely semantic bioinformatics, knowledge representation, and semantic tools were in common. The most mature and mainstream thematic clusters were natural language processing techniques to boost modeling and visualization, context-aware knowledge discovery, probabilistic latent semantic analysis (PLSA), semantic tools, latent semantic indexing, web ontology language (OWL) syntax, and ontology-based deep learning.Originality/valueThis study adopted various techniques such as co-word analysis, social network analysis network structure visualization, and hierarchical clustering to represent a suitable, visual, methodical, and comprehensive perspective into linked data. 
653 |a Linked Data 
653 |a Science 
653 |a Social networks 
653 |a Concept mapping 
653 |a Ontology 
653 |a Words (language) 
653 |a Knowledge discovery 
653 |a Library and information science 
653 |a Python 
653 |a Semantic web 
653 |a Clustering 
653 |a Network analysis 
653 |a Keywords 
653 |a Tourism 
653 |a Knowledge representation 
653 |a Bioinformatics 
653 |a Data analysis 
653 |a Big Data 
653 |a Semantics 
653 |a Cluster analysis 
653 |a Publications 
653 |a Programming languages 
653 |a Knowledge management 
653 |a Web Ontology Language-OWL 
653 |a Data collection 
653 |a Indexing 
653 |a Resource Description Framework-RDF 
653 |a Libraries 
653 |a Natural language processing 
653 |a Software engineering 
653 |a Knowledge organization 
653 |a Visualization 
653 |a Information retrieval 
653 |a Cultural heritage 
653 |a Computer science 
653 |a Analysis 
653 |a Deep learning 
653 |a Medical informatics 
653 |a Semantic analysis 
653 |a Social network analysis 
653 |a Syntax 
653 |a Hierarchies 
653 |a Applied research 
653 |a Research methodology 
653 |a Language attitudes 
653 |a Comorbidity 
700 1 |a Kimiya Taghizadeh Milani  |u Department of Information Science and Knowledge Studies, Alzahra University, Tehran, Iran 
700 1 |a Mohammad Shaker Sabetnasab  |u Department of Medical Library and Information Sciences, Boushehr University of Medical Sciences, Bushehr, Iran 
773 0 |t Library Hi Tech  |g vol. 43, no. 1 (2025), p. 81-113 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3162627418/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3162627418/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3162627418/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch