DyAb: sequence-based antibody design and property prediction in a low-data regime

Guardat en:
Dades bibliogràfiques
Publicat a:bioRxiv (Feb 2, 2025)
Autor principal: Joshua Yao-Yu Lin
Altres autors: Hofmann, Jennifer L, Leaver-Fay, Andrew, Wei-Ching, Liang, Vasilaki, Stefania, Lee, Edith, Pinheiro, Pedro O, Tagasovska, Natasa, Kiefer, James R, Wu, Yan, Seeger, Franziska, Bonneau, Richard, Gligorijevic, Vladimir, Watkins, Andrew, Cho, Kyunghyun, Frey, Nathan C
Publicat:
Cold Spring Harbor Laboratory Press
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3162651455
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2025.01.28.635353  |2 doi 
035 |a 3162651455 
045 0 |b d20250202 
100 1 |a Joshua Yao-Yu Lin 
245 1 |a DyAb: sequence-based antibody design and property prediction in a low-data regime 
260 |b Cold Spring Harbor Laboratory Press  |c Feb 2, 2025 
513 |a Working Paper 
520 3 |a Protein therapeutic design and property prediction are frequently hampered by data scarcity. Here we propose a new model, DyAb, that addresses these issues by leveraging a pair-wise representation to predict differences in protein properties, rather than absolute values. DyAb is built on top of a pre-trained protein language model and achieves a Spearman rank correlation of up to 0.85 on binding affinity prediction across molecules targeting three different antigens (EGFR, IL-6, and an internal target), given as few as 100 training data. We employ DyAb in two design contexts: as a ranking model to score combinations of known mutations, and combined with a genetic algorithm to generate new sequences. Our method consistently generates novel antibody candidates with high binding rates, including designs that improve on the binding affinity of the lead molecule by more than ten-fold. DyAb represents a powerful tool for engineering therapeutic protein properties in low data regimes common in early-stage drug development.Competing Interest StatementThe authors have declared no competing interest. 
653 |a Protein folding 
653 |a Predictions 
653 |a Drug development 
653 |a Amino acid sequence 
653 |a Protein engineering 
653 |a Proteins 
700 1 |a Hofmann, Jennifer L 
700 1 |a Leaver-Fay, Andrew 
700 1 |a Wei-Ching, Liang 
700 1 |a Vasilaki, Stefania 
700 1 |a Lee, Edith 
700 1 |a Pinheiro, Pedro O 
700 1 |a Tagasovska, Natasa 
700 1 |a Kiefer, James R 
700 1 |a Wu, Yan 
700 1 |a Seeger, Franziska 
700 1 |a Bonneau, Richard 
700 1 |a Gligorijevic, Vladimir 
700 1 |a Watkins, Andrew 
700 1 |a Cho, Kyunghyun 
700 1 |a Frey, Nathan C 
773 0 |t bioRxiv  |g (Feb 2, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3162651455/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3162651455/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2025.01.28.635353v1