FISHNET: A Network-based Tool for Analyzing Gene-level P-values to Identify Significant Genes Missed by Standard Methods

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:bioRxiv (Feb 2, 2025)
1. Verfasser: Acharya, Sandeep
Weitere Verfasser: Vaha Akbary Moghaddam, Woo Seok Jung, Yu Sung Kang, Liao, Shu, Province, Michael, Brent, Michael
Veröffentlicht:
Cold Spring Harbor Laboratory Press
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text - PDF
Full text outside of ProQuest
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3162652135
003 UK-CbPIL
022 |a 2692-8205 
024 7 |a 10.1101/2025.01.29.635546  |2 doi 
035 |a 3162652135 
045 0 |b d20250202 
100 1 |a Acharya, Sandeep 
245 1 |a FISHNET: A Network-based Tool for Analyzing Gene-level P-values to Identify Significant Genes Missed by Standard Methods 
260 |b Cold Spring Harbor Laboratory Press  |c Feb 2, 2025 
513 |a Working Paper 
520 3 |a FISHNET uses prior biological knowledge, represented as gene interaction networks and gene function annotations, to identify genes that do not meet the genome-wide significance threshold but replicate nonetheless. Its input is gene-level P-values from any source, including omicsWAS, aggregation of GWAS P-values, CRISPR screens, or differential expression analysis. It is based on the idea that genes whose P-values are low due to sampling error are distributed randomly across networks and functions, so genes with suggestive P-values that cluster in densely connected subnetworks and share common functions are less likely to reflect sampling error and more likely to replicate. FISHNET combines network and function analysis with permutation-based P-value thresholds to identify a small set of exceptional genes that we call FISHNET genes. Applied to 11 cardiovascular risk traits, FISHNET identified 19 gene-trait relationships that missed genome-wide significance thresholds but, nonetheless, replicated in an independent cohort. The replication rate of FISHNET genes matched or exceeded that of other genes with similar P-values. FISHNET identified a novel association between RUNX1 expression and HDL that is supported by experimental evidence that RUNX1 promotes white fat browning, which increases HDL cholesterol levels. FISHNET also identified an association between LTB expression and BMI that is supported by experimental evidence that higher LTB expression increases BMI via activation of the LTβR pathway. Both associations failed genome-wide significance thresholds, highlighting FISHNET's ability to uncover meaningful relationships missed by traditional methods. FISHNET software is freely available at https://doi.org/10.5281/zenodo.14765850.Competing Interest StatementThe authors have declared no competing interest. 
653 |a Runx1 protein 
653 |a High density lipoprotein 
653 |a Genomes 
653 |a Cholesterol 
653 |a Sampling 
653 |a Sampling error 
653 |a CRISPR 
653 |a Genes 
653 |a Cardiovascular diseases 
700 1 |a Vaha Akbary Moghaddam 
700 1 |a Woo Seok Jung 
700 1 |a Yu Sung Kang 
700 1 |a Liao, Shu 
700 1 |a Province, Michael 
700 1 |a Brent, Michael 
773 0 |t bioRxiv  |g (Feb 2, 2025) 
786 0 |d ProQuest  |t Biological Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3162652135/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3162652135/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://www.biorxiv.org/content/10.1101/2025.01.29.635546v1