MARC

LEADER 00000nab a2200000uu 4500
001 3163152535
003 UK-CbPIL
022 |a 1814-9324 
022 |a 1814-9332 
024 7 |a 10.5194/cp-21-357-2025  |2 doi 
035 |a 3163152535 
045 2 |b d20250101  |b d20251231 
084 |a 123620  |2 nlm 
100 1 |a Netzel, Timon  |u Institute for Geoscience, Sect. Meteorology, University of Bonn, Auf dem Hügel 20, 53121 Bonn, Germany 
245 1 |a New probabilistic methods for quantitative climate reconstructions applied to palynological data from Lake Kinneret 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a Quantitative local paleoclimate reconstructions are an important tool for gaining insights into the climate history of the Earth. The complex age–sediment–depth and proxy–climate relationships must be described in an appropriate way. Bayesian hierarchical models are a promising method for describing such structures.In this study, we present a new age–depth transformation in a Bayesian formulation by determining the uncertainty information of depths in lake sediments at a given age. This enables data-driven smoothing of past periods, which allows better interpretation.We introduce a systematic, machine-learning-based way to establish probabilistic transfer functions which connect spatial distributions of temperature and precipitation to the spatial presence of specific biomes. This includes consideration of various machine learning (ML) algorithms for solving the classification problem of biome presence and absence, taking into account uncertainties in the proxy–climate relationship. For the models and biome distributions used, a simple feedforward neural network provides the optimal choice of the classification problem.Based on this, we formulate a new Bayesian hierarchical model that generates local paleoclimate reconstructions. This is applied to plant-based proxy data from the lake sediment of Lake Kinneret (LK). Here, a&#xa0;priori information on the recent climate in this region and data on arboreal pollen from this lake are used as boundary conditions. To solve this model, we use Markov chain Monte Carlo (MCMC) sampling methods. During the inference process, our new method generates taxa weights and biome climate ranges. The former shows that less weight needs to be given to Olea europaea to ensure the influence of the other taxa. In contrast, the highest weights are found in Quercus calliprinos and Amaranthaceae, resulting in appropriate flexibility under the given boundary conditions. In terms of climate ranges, the posterior probability of the Mediterranean biome reveals the greatest change, with an average boreal winter (December–February) temperature of <inline-formula>10∘C</inline-formula> and an annual precipitation of 700 mm for Lake Kinneret during the Holocene. The paleoclimate reconstruction for this period shows comparatively low precipitation of about 400 mm during 9–7&#xa0;and 4–2 cal ka BP. The respective temperatures fluctuate much less and stay around 10 °C. 
651 4 |a Israel 
651 4 |a Lake Kinneret 
651 4 |a Europe 
651 4 |a Dead Sea 
651 4 |a Sea of Galilee 
653 |a Holocene 
653 |a Classification 
653 |a Boundary conditions 
653 |a Annual precipitation 
653 |a Artificial neural networks 
653 |a Neural networks 
653 |a Machine learning 
653 |a Uncertainty 
653 |a Precipitation 
653 |a Transfer learning 
653 |a Transfer functions 
653 |a Sediments 
653 |a Spatial distribution 
653 |a Bayesian analysis 
653 |a Pollen 
653 |a Data smoothing 
653 |a Algorithms 
653 |a Conditional probability 
653 |a Methods 
653 |a Probability theory 
653 |a Sediment 
653 |a Monte Carlo simulation 
653 |a Taxa 
653 |a Lakes 
653 |a Palynology 
653 |a Lake deposits 
653 |a Markov chains 
653 |a Sampling methods 
653 |a Generalized linear models 
653 |a Lake sediments 
653 |a Age 
653 |a Automation 
653 |a Depth 
653 |a Statistical analysis 
653 |a Ecosystems 
653 |a Chronology 
653 |a Learning algorithms 
653 |a Paleoclimatology 
653 |a Probabilistic methods 
653 |a Temperature 
653 |a Climate models 
653 |a Paleoclimate 
653 |a Climate 
653 |a Mathematical models 
653 |a Bayesian theory 
653 |a Climate change 
653 |a Environmental 
700 1 |a Miebach, Andrea  |u Bonn Institute of Organismic Biology, Sect. Paleontology, University of Bonn, Nussallee 8, 53115 Bonn, Germany 
700 1 |a Litt, Thomas  |u Bonn Institute of Organismic Biology, Sect. Paleontology, University of Bonn, Nussallee 8, 53115 Bonn, Germany 
700 1 |a Hense, Andreas  |u Institute for Geoscience, Sect. Meteorology, University of Bonn, Auf dem Hügel 20, 53121 Bonn, Germany 
773 0 |t Climate of the Past  |g vol. 21, no. 2 (2025), p. 357 
786 0 |d ProQuest  |t Continental Europe Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3163152535/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3163152535/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3163152535/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch