Avoided Crossing Phonons Realizes High‐Performance Single‐Crystalline β‐Zn4Sb3 Thermoelectrics

Salvato in:
Dettagli Bibliografici
Pubblicato in:Advanced Science vol. 12, no. 5 (Feb 1, 2025)
Autore principale: Jen, I‐Lun
Altri autori: Lin, Cheng‐Yen, Wang, Kuang‐Kuo, Wu, Chun‐Ming, Lee, Chi‐Hung, Wu, Hsin‐Jay
Pubblicazione:
John Wiley & Sons, Inc.
Soggetti:
Accesso online:Citation/Abstract
Full Text
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3163163479
003 UK-CbPIL
022 |a 2198-3844 
024 7 |a 10.1002/advs.202411498  |2 doi 
035 |a 3163163479 
045 0 |b d20250201 
100 1 |a Jen, I‐Lun  |u Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan 
245 1 |a Avoided Crossing Phonons Realizes High‐Performance Single‐Crystalline β‐Zn4Sb3 Thermoelectrics 
260 |b John Wiley & Sons, Inc.  |c Feb 1, 2025 
513 |a Journal Article 
520 3 |a This study reveals the mechanisms behind the ultralow lattice thermal conductivity κL in β‐Zn4Sb3 single crystals through inelastic neutron scattering (INS). Analyzing phonon behaviors and the interaction between acoustic phonons and rattling modes, the first experimental evidence of avoided crossing in β‐Zn4Sb3 is provided. The rattler‐phonon avoided crossings contribute to the low κL in a β‐Zn4Sb3 single crystal, enhancing the thermoelectric figure‐of‐merit (zT). TEM characterizations of the β‐Zn4Sb3 single crystal with intrinsic and ultralow κL reveal a grain‐boundary‐free structure with uniformly dispersed rotation moiré fringes that contribute to low lattice thermal conductivity while maintaining a uniform elemental distribution. Additionally, the significant impact of crystallinity control coupled with dilute doping on boosting thermoelectric performance, with single‐crystalline single leg outperforming their polycrystalline counterparts is demonstrated. Notably, the conversion efficiency η of the undoped β‐Zn4Sb3 single leg achieves 1.4% under a temperature gradient of 200 K. 
653 |a Alternative energy 
653 |a Heat conductivity 
653 |a Temperature 
700 1 |a Lin, Cheng‐Yen  |u Department of Applied Physics, Tunghai University, Taichung, Taiwan 
700 1 |a Wang, Kuang‐Kuo  |u Department of Materials and Optoelectronic Science, National Sun Yat‐sen University, Kaohsiung, Taiwan 
700 1 |a Wu, Chun‐Ming  |u National Synchrotron Radiation Research Center, Hsinchu, Taiwan 
700 1 |a Lee, Chi‐Hung  |u Department of Applied Physics, Tunghai University, Taichung, Taiwan 
700 1 |a Wu, Hsin‐Jay  |u Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan 
773 0 |t Advanced Science  |g vol. 12, no. 5 (Feb 1, 2025) 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3163163479/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3163163479/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3163163479/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch