A High Performance Computing Web Search Engine Based on Big Data and Parallel Distributed Models

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:Informatica vol. 48, no. 20 (Dec 2024), p. 27
Үндсэн зохиолч: Ma, Jun
Хэвлэсэн:
Slovenian Society Informatika / Slovensko drustvo Informatika
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3163253355
003 UK-CbPIL
022 |a 0350-5596 
022 |a 1854-3871 
024 7 |a 10.31449/inf.v48i20.6776  |2 doi 
035 |a 3163253355 
045 2 |b d20241201  |b d20241231 
084 |a 179436  |2 nlm 
100 1 |a Ma, Jun  |u School of Information Engineering, Changsha Medical University Changsha 410219, China 
245 1 |a A High Performance Computing Web Search Engine Based on Big Data and Parallel Distributed Models 
260 |b Slovenian Society Informatika / Slovensko drustvo Informatika  |c Dec 2024 
513 |a Journal Article 
520 3 |a This paper presents a high-performance web search system leveraging big data technology. Utilizing a heterogeneous architecture and a parallel distributed computing model based on the MapReduce framework, the system significantly enhances efficiency, scalability, and reliability. The design includes a storage management scheme that integrates cloud storage and grid computing technologies, facilitating efficient storage and rapid access to large-scale data. Key components such as an inverted index structure, vector space model, and semantic analysis models are employed to implement functionalities across the data, logic, and display layers. An experimental environment was set up on the Microsoft Azure cloud platform using the Common Crawl dataset for testing. Performance evaluation, based on metrics including response time, accuracy, and stability, demonstrates the system's superior performance compared to two existing systems, thereby validating its effectiveness. 
653 |a Big Data 
653 |a Machine learning 
653 |a Search engines 
653 |a Computers 
653 |a User needs 
653 |a Performance evaluation 
653 |a Artificial intelligence 
653 |a Data structures 
653 |a Cloud computing 
653 |a Computational grids 
653 |a Data search 
653 |a System effectiveness 
653 |a Data storage 
653 |a High performance computing 
653 |a Distributed processing 
653 |a Efficiency 
653 |a Information retrieval 
653 |a Vector spaces 
773 0 |t Informatica  |g vol. 48, no. 20 (Dec 2024), p. 27 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3163253355/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3163253355/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3163253355/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch