Advanced Hybridization and Optimization of DNNs for Medical Imaging: A Survey on Disease Detection Techniques

Uloženo v:
Podrobná bibliografie
Vydáno v:The Artificial Intelligence Review vol. 58, no. 4 (Apr 2025), p. 122
Vydáno:
Springer Nature B.V.
Témata:
On-line přístup:Citation/Abstract
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3163305667
003 UK-CbPIL
022 |a 0269-2821 
022 |a 1573-7462 
024 7 |a 10.1007/s10462-024-11049-x  |2 doi 
035 |a 3163305667 
045 2 |b d20250401  |b d20250430 
084 |a 68693  |2 nlm 
245 1 |a Advanced Hybridization and Optimization of DNNs for Medical Imaging: A Survey on Disease Detection Techniques 
260 |b Springer Nature B.V.  |c Apr 2025 
513 |a Journal Article 
520 3 |a Due to the high classification accuracy and fast computational speed offered by Deep Neural Networks (DNNs), they have been widely used for the design and development of automated Artificial Intelligence (AI) tools for the detection of various diseases. These tools, which are intensive computational learning models, hold tremendous significance in healthcare for identifying various diseases. The primary goal of this review is to understand the applicability and methodology for implementing DNNs, including computational costs, for the classification of distinct diseases from disparate medical imaging datasets. This study presents an extensive survey of DNNs along with their various hybridization forms. To achieve this, the research papers surveyed have been grouped into five categories: pretrained DNNs, hyperparameter-tuned optimized DNNs, hybrid DNNs and ML classifiers, hybrid models with optimization techniques, and meta-heuristics based feature selection DNNs. The major part of this review highlights the significant role of nature-inspired meta-heuristic techniques used for hyperparameter optimization or feature selection algorithms of DNNs. Besides the frameworks and computational costs, descriptions of disparate medical image datasets and image preprocessing techniques have also been discussed under each category. Furthermore, a comparative analysis for each category has been performed on the basis of different parameters, including the type and size of datasets used, image preprocessing, methodology (as per the mentioned category), and performance (in terms of classification accuracy). This study also presents a bibliometric analysis based on the publication count of various articles related to hyperparameter-tuned optimized DNNs and meta-heuristic based feature selection DNNs. This review aims to assist potential AI researchers in choosing the most sound and appropriate DNN-based techniques for disease detection and prediction, all consolidated into a one single research paper. 
653 |a Accuracy 
653 |a Heuristic 
653 |a Medical electronics 
653 |a Datasets 
653 |a Preprocessing 
653 |a Classification 
653 |a Bibliometrics 
653 |a Optimization techniques 
653 |a Artificial neural networks 
653 |a Medical imaging 
653 |a Computing costs 
653 |a Feature selection 
653 |a Algorithms 
653 |a Artificial intelligence 
653 |a Machine learning 
653 |a Design optimization 
653 |a Software 
653 |a Heuristic methods 
653 |a Sound design 
653 |a Citations 
653 |a Disease 
653 |a Comparative analysis 
653 |a Neural networks 
653 |a Optimization 
653 |a Classifiers 
653 |a Polls & surveys 
653 |a Health services 
653 |a Health care 
653 |a Health care expenditures 
773 0 |t The Artificial Intelligence Review  |g vol. 58, no. 4 (Apr 2025), p. 122 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3163305667/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3163305667/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch